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Abstract—The laminar fully developed flow of water in a vertical channel is examined, using the
complete equations of motion with experimental values (in the range 0-100°C) for the viscosity,
conductivity, specific heat, and density. Although the local effects of variations in these quantities are,
of course, small, the cumulative effect is significant for moderate temperature differences. Accordingly,
emphasis has been placed on the evaluation of integrated properties such as mass flow and heat

transfer.

Poiseuille, Couette and mixed Poiseuille-Couette flows are investigated for a range of wall tempera-
ture differences and the effects of the temperature dependent properties on the velocity and thermal
profiles are discussed in detail. Wall Nusselt numbers, flow rates, skin friction coefficients, friction

factors and Reynolds analogy factors are evaluated for all these regimes.

NOMENCLATURE

Ay, By, Ci, Dy, coefficients;
Cp, specific heat at constant pres-
sure, cal/g degC;
d, distance between the plates,
cm;
Er = N%/Jey(Ty — To), Eckert number;
g, acceleration due to gravity;
Gr = —pr(p1 — po)gd®/p2, Grashofnumber;
k, thermal conductivity, cal/scm
degC;
n = V/Ny, dimensionless velocity of the
plate;
2
Ny = id— [—— %@]’ representative  velocity
b *1" related to the pressure
gradient, cm/s;
Nu, Nusselt number;
Ds pressure;
Pr =uCy/k, Prandtl number;

Rey = pyNyd/ur, Reynolds number;
Nu/CyRey, Reynolds factor;
T, temperature, °C;

* Present address: Department of Applied Mathe-

matics, University of Hull.

u,

U= u/NT’

V == nNr,

W,

X, Vs 2,

Y =y/d,
Greek symbols

a, B’

Br,

yr = Ey Pry,

oy

P

velocity, cm/s;
dimensionless velocity;
velocity of plate at y = d;
flow rate, g/s;

Cartesian co-ordinates, cm;
dimensionless co-ordinate.

constants of integration;
coefficient of volumetric ex-
pansion, 1/degC;

a dimensionless quantity;
viscosity, g/cm s;

density, g/cm3;

0 = (T — Ty)/(T1 — To), dimensionless

Subscripts
1,2,

r
D,

temperature.

wall condition at y =0, d
respectively;

reference condition;

dynamic condition.

1. INTRODUCTION

THE MOST commonly used coolants in heat-
transfer appliances are probably air and water.
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A great deal of theoretical information on basic
laminar flow and heat-transfer problems involv-
ing air now exists in the literature. In particular
for the compressible laminar boundary layer (see
Stewartson {1]) calculations have been performed
with due allowance for variable physical pro-
perties. Moreover, the study of a model gas having
similar overall variable physical properties has
proved extremely fruitful, since the equations
of motion are then more tractable analytically
and are more amenable to numerical analysis.

To date it does not appear from the literature
that the present quantitative knowledge of
laminar flow with heat transfer in liquids is as
satisfactory. One of the essential difficulties is
that the properties of the two main classifications,
namely metallic and non-metallic liquids are
widely different. Even for the class of non-
metallic liquids the results obtained for a given
flow and heat-transfer configuration with a high
viscosity liquid are expected to differ from those
obtained using a low viscosity liquid ; for example,
in the former viscous dissipation may cause
appreciable changes, whilst in the latter it is
negligible.

However, considerable progress has been
made in obtaining quantitative information on
the effects of temperature-dependent viscosity
in liquids. Attention has been given to the flow
of oil between a journal and its bearing. As oil
has a high viscosity significant changes in velocity
and thermal profiles occur due to a temperature
rise produced by viscous dissipation. Such effects
have been considered in detail by Vogelpohl [2],
Nahme [3], Hausenblas [4] and by Targ {5]. In
these references the conductivity and density of
the oil were assumed independent of the tempera-
ture and the viscosity—temperature dependence
was taken either in the form

pl=a-+bT or pu-aexp(hT),

where ¢ and b are constants determined from
experimental data.

Another class of problem which has received
quite considerable treatment in the literature is
the forced convection by laminar flow in ducts
and tubes. The work of Deissler [6] deals with
the fully developed velocity and thermal profiles
for the flow of liquid metals in a circular tube;
here it is assumed that the heat-transfer rate
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varies slowly along the tube in the flow direction
and the fluid properties are variable along the
radius. Maslen [7] has discussed the fully
developed combined free and forced convection
between vertical flat plates, which are maintained
at constant temperature. In this work the
variation of conductivity with temperature is
neglected and the p and p dependence was

approximated by the relations:
p b= a 40T, p== ol - BAT - T

It should be noted that the latter approximation
to the equation of state enables the flow and heat
transfer to be evaluated without a priori informa-
tion on 7, the reference inlet temperature.
Subject to the above relations Maslen presents
an exact solution of the equations of motion
when viscous dissipation is neglected.

Allowing for a linear variation of viscosity
with temperature the classical constant property
Graetz solution for the thermal entrance length
has been re-investigated. For a step change in
wall temperature, an iterative procedure based
on the isothermal solution as a first approxima-
tion has been used by Boelter ¢ ¢l. [8], Yama-
gata {9], and Pigford {10] to obtain first-order
corrections in the velocity profile. Yamagata (9]
and Pigford [10] have also obtained first-order
corrections in local heat-transfer coefficients at
the start of the inlet region, where the velocity
profile may be approximated by a finear function.
The thermal entrance region for a circylar tube
has been further treated by Yang [11] using the
Pohlhausen type integral techniques of boundary
layer theory. Yang treats the cases of a step
change in wall temperature and a step change in
wall heat flux. In his analysis the viscosity—
temperature dependence s taken to be
ptesg - BT the inertia terms and density
variations are neglected in the momentum
equation; and finally viscous dissipation and
heat transfer by radial convection are neglected
in the energy equation, where the conductivity
is taken to be constant. It should be noted that
in the work of Pigford [10] buoyancy effects are
included on assuming that the density varies
linearly with temperature.

The above heat-transfer problems have been
investigated using relatively simple relationships
for the variation of viscosity with temperature.
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Most liquids have a definite non-linear viscosity
variation with temperature and this is true, but
to a much less degree, of the temperature varia-
tions in density, conductivity and specific heat.
It is clear that a more careful study should be
made of the validity of many of the approxima-
tions used in the solution of these problems.
However, a variable fluid property problem in
free convection has been successfully solved by
Sparrow and Gregg [12]. Here the free convection
flow of mercury due to a vertical heated flat plate
is discussed. Two numerical solutions of the
relevant boundary layer equations are given in
which full account has been taken of variations
in density, specific heat, conductivity and
viscosity with temperature. From these solutions
Sparrow and Gregg have shown that flow and
heat-transfer characteristics can be obtained
using constant property results in conjunction
with certain reference temperature relationships.

The authors feel that to understand the non-
linear effects introduced by variable properties
in liquids it would be more attractive to study
carefully the behaviour of one specific liquid
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under various basic flow and heat-transfer con-
figurations. The liquid to be used in this series
of papers is water. For water, except at very
high pressures or at conditions near the critical
point, the properties may be taken as equal to the
saturated values at the appropriate temperatures.
The data for saturated water has been taken
from tables recently compiled by Mayhew and
Rogers [13]. A discussion of the treatment of this
data is given in Appendix A. It can be seen from
Table 1 that even for small temperature differ-
ences the variation in molecular viscosity is quite
significant. In an extreme case the ratio of the
viscosity at 0°C to that at 100°C is 6-35, and for
such a temperature range it is to be expected
that shear stresses and heat-transfer coefficients
will be strongly dependent on the nature of the
non-isothermal region of flow. Moreover it is
assumed that fluid pressures and temperatures
will be such that steam blanketing does not occur
on solid boundaries.

With the aid of a digital computer a series of
calculations on laminar forced and free con-
vection in ducts and boundary layer flows on

Table 1
T
p Cp pox 102 k x 103 10§k dT
0
Experi- Experi- Experi- Experi-

mental Formulae rmental Formulae mental Formulae mental Formulae Formulas
Value (A.D Value (A1) Value (A.D Value A (A1)

0-01 0:99980  0-99980 1-0055 1-0055 1-782 1782 1-316 1-316 0-00000

5 099990 099992 1-0041 1-0047 1-517 1-517 1-345 1346 0-06660
10 099970 0-99970 1-0015 1-0015 1-306 1-306 1373 1373 01346
15 0-99900  0-99910 0-9996 09997 1-138 1-138 1-402 1-403 0-2040
20 0-99820  0-99820 0-9989 09988 1-002 1-002 1431 1-431 02748
25 0-99701 099704 09984 0-9983 0-8903 0-8903 1-455 1-455 03470
30 0-99562  0-99562 0-9979 09979 07975 07975 1-476 1-476 04203
35 0-99404 099397 09977 0-9977 0-7193 07194 1-495 1-496 0-4946
40 099216 099216 0-9979 09979 06531 06531 1-514 1-514 0-5698
45 099020  0:99022 09984 09982 0-5963 0-5962 1-531 1:532 L6460
50 098813  0-98813 0-9986 09986 0-5471 0-5471 1-548 1-548 0-7230
55 098522 098584 0-9989 09989 0-5044 0-5043 1-562 1-562 0-8007
60 0-98328 098328 0-9993 0-9993 0-4668 0-4668 1-574 1-574 0-8791
65 098039  0-98047 1-0001 09999 0-4338 0-4337 1-586 1-585 0-9531
70 097752 097752 1-0008 1-0008 0-4044 0-4044 1-596 1-596 1-0376
75 097466  0-97461 1-0015 1-0017 0-3783 0-3782 1-603 1-604 1-1176
80 0:97182 0-97182 1-0024 10024 0-3547 0-3547 1610 1-610 1-1980
85 096899  0-96888 1-0036 1-0032 0-3336 03335 1-617 1-615 1-2786
90 096525  0-96525 1-0048 1-0048 03144 03144 1-624 1-624 1:3595
95 096154 096075 1-0060 1-:0077 02970 0-2971 1-629 1-639 1-4411
100 095784 095784 1-0075 1-0075 02812 0-2812 1-631 1-631 1-5231
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plane and curved surfaces will be carried out.
Another interesting flow field is one which
involves boundary layer separation on heated or
cooled surfaces. The results using water will be
different from those using air (as reported in
[1]), since the variation with temperature of the
viscosity of water is opposite to that of air.

The purpose of this paper is to investigate the
laminar fully developed flow of water between
heated vertical plates. The main reason for
treating this flow configuration is that the effects
of variable fluid properties on the flow and heat
transfer will be easy to analyse and will not be
masked as in references 8-11 by effects due to
hydrodynamic and thermal entrance lengths.

2. NON-ISOTHERMAL FLOW BETWEEN
PARALLEL FLAT PLATES

Consider the steady fully developed laminar
flow between parallel flat plates of infinite
extension in the vertical x-direction as shown
schematically in Fig. 1. The plate at y == 0 is
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Fic. 1. Flow configuration.

fixed and maintained at temperature 7p; the
plate at y = d is maintained at temperature 71
and moves with velocity V; a uniform pressure
gradient [0p/ox] acts in the x-direction. In all
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planes perpendicular to the y-direction the flow
will be the same and it is assumed that the
quantities describing the flow are functions of
the y-ordinate only.

The governing equations of motion are:

o . .
'bx (pu) - 0, (h
I o aop "
S - DO
Jy ® iy ex P (2)
o T 1 jéul? Tu dp
- o . B 3]
ay [k ay] g [ayJ Pryoxe %)
where
1 jdpy
HEC
f P (?)T/ p

is the coefficient of volumetric expansion.
The boundary conditions are:

we==0, T-:Tpat y =0,

ue=V, T=Tyaty =d ;> )
The temperature dependent relations:
p = p(T), w =Ty and k - k(T) (5

are required to complete the above system of
equations (see Appendix A}.

Consider now equations (1)-(5). The con-
tinuity equation (1) states the assumption that
the velocity and thermal profiles are fully
developed. The pressure gradient dp/éx is con-
stant and all other partial derivatives in the
momentum and energy equations (2) and (3)
now become ordinary differentials. Apart from
the non-linearity introduced by the variable
fluid properties (5) these equations are coupled
by virtue of the gravitational body force, viscous
dissipation and the compression work term. Due
to the presence of the gravitational body force
it is necessary to specify the temperature of the
fluid at the inlet; this is denoted by T;.

In the usual fashion the body force is expressed
in terms of the buoyancy force, on defining

Pp=p— Pr (6)

where pr is the hydrostatic pressure that would
be obtained at a particular level if the tempera-
ture of the water was constant and equal to 7
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throughout the system (see Ostrach [14]). Now
(dpr/ox) = — prg and so the momentum equation
(2) becomes:

d du apl)
dy [u ny] = ox T (p—p Q)
Introducing the representative velocity
dz 1 opp
M-S e
and the new variables:
y u T — Ty
= - == T @ == T 9
Y="0pU=7%, T =T’ ®
these equations reduce to:
d [wdU Gre [ p— Pr]
— 1 = , 10
dy [p,,dY] Rer [m — Po (10)
d [k dO] p [dUT2
dy |ke dv| T 7 g |dY .
@ [BTuap )
kiTr — To) | J ox|’

subject to the boundary conditions:
U=0, 6=0,at Y=0, )

v (12)

U= =1, at Y=1.

]—v; ’
In equations (10) and (11) the Reynolds number
Nyd
Re, — Pri¥r :
24

The Grashof number

eI

Grr = ,“'f s
and
1 prNy
Yr = 7 kr(Tl _ TO) = FEr X Pry,
where the Eckert number
N?
E = -7—5];1‘ (T — Ty)

and the Prandtl number

Prr = I:gllc)!f:lr.
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To establish the order of magnitude of these
terms, a constant fluid property model will be
used to discuss the special case of the flow
between fixed plates. Furthermore to avoid
undue complications the inlet temperature is
taken to be Ty = }(T1 + To), the arithmetic
mean of the plate temperatures. The model
fluid is assumed to have the properties:

k =kr, p=pr, p=pll — BT — TH)1* (13)

The variable property equations (10) to (12)
become:

U g" 1 ]

qye ~*2+Rer(§_@),

d2e dui?

iy = Yr[dv)',} + - (14)
ﬁrN rTrd 2 2].LrN T

J(Tl . T())kr [ d2 + Pfg U, J

subject to the conditions:

U(0) = U(1) =0,
6(0) =0, 6(1) = 1.

} (15)

Consider the following example when the
representative velocity Ny = 100 cm/s, d = $ cm,
To = 10°C and T, =20°C. From Table 1,
p1s = 0999 g/cm3, ui1s = 1-138 x 102 g/cm s,
kis = 1402 x 10-8 cal/s cm degC and Bi5 =
1-5 X 1074/degC. From the above definitions
Rey = 44 x 103, Gry = 14, (Gre/Rey) = 32 X
1073, y» = 1-9 x 104 and the maximum value
of the compression term will be an order of
magnitude less than y,. In this latter connection
it has been shown by Hanratty et al. [16], who
studied a similar constant fluid property model,
that computed temperature profiles were un-
affected by density changes except at values of
Grr/Rey greater than 120.

*In the evaluation of the order of magnitude of the
compression work term in equation (11) it is sufficient
to replace T by T;.

+ If the Reynolds number Re is based on the average
velocity, then Re ==FRer= 733. In an experimental
investigation on fully developed turbulent heat transfer
to water in thin rectangular channels, Levy et al. [15] state
that their test data for Re < 104 may be in the transitional
region between laminar and turbulent flow.
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The results to be presented in this paper on
the variable fluid property flow and heat transfer
in water will relate to flow regimes with buoyancy
force neglected, i.e. the relevant dimensionless
group Gr/Rer € 1. In sacrificing this term
the flow and heat transfer depend only on the
four quantities d, (6pp/ox), To and T.*

Returning now to the variable property
equations (10)-(12) and on neglecting the
buoyancy force term and the work done against
compression these equations become:

d [pdU
e I |
ay Wdy} 2, (16)
and
aeer v
i dY - o lav ] an

The suffix r is used to denote an arbitrary refer-
ence temperature taken to be T, = ¥(To -+ T1).
The thermal boundary conditions are:

0(0) 0, 6(1) = 1. (18)

In the general case when the pressure gradient
opp/ox is non-zero and the upper plate moves
with velocity ¥ = aN, the boundary conditions
on the velocity are:

Uy ==0, U(l) = n, 19

where n is positive or negative; for example,
when #» is negative the upper plate velocity is
adverse to the velocity induced by the pressure
gradient; when n = 0, i.e. the upper plate is at
rest, the flow is the variable property Poiseuille
flow. The special case of Couette flow is obtained
when épp/éx = 0 but non-zero ¥, and is included
in the above set of equations; when the right-
hand side of (16) is identically zero, Ny = V¥, i.e.
n =1

A description of the numerical solution of
the fourth order beundary value prob]em defined
by equations (16)-(19) is given in Appendix B.
Durmg the course of the numerlcal work it was

* Otherw;se for ﬁxed T o and T; a family of solunom
exist for various datum temperature levels, However, if
viscous dissipation is negligible the forced and free con-
vection flows are simiply superimposed. Some calculations
have been completed for the free convection contribution
to the flow for various 7, and these may be presented at
a later date.
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established that the effect of viscous dissipation
is negligible for the laminar flow of water at
e =2 2000,

3. DEFINITIONS OF FLOW AND HEAT-TRANSFER
CHARACTERISTICS
Various quantities which are of interest are
now defined. The reference temperature

Ty == HTo + Th)

will be used throughout.

Reynolds number
(20)
where the average velocity
.
i == (]fj udy == Ny ‘ Udy.

4] is

2n

Friction factor
In hydraulic calculations the pressure drop
per unit of length is expressed by

o], i
ox | T2

The quantity { is known as the friction factor
and it is easily shown that

1
{ Re, =4/ f U AY. (22)
3

Shear stress and skin friction
The wall shear stresses are given by

dy 7 ;L()Nr dL
0 Bayly-o  d dY]ya

- du Ny dU”
™ {#dy ued d dY

These can be made dimensionless through the
definition of local skin friction coefficients. Thus

and

TQ 71
Cro = T s and Cfl ST ey
g Pri” s prit”

producing the following refations:
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1
=-— |75 Udy,
Cro Rey iy [dY Yeo y
o
1

2u1 [dU
Cf1 Re, == ”,U:r [dY]Y=1 /.([ Udy.

Nusselt number

A dimensionless representation of the heat-
transfer results is achieved by the use of a local
heat-transfer coefficient and local Nusselt num-
ber, which are written in the usual way as

(23)

heed Ny
T (M — T’ Tk’
where the heat flux
g = —k(dT/dy).

Thus at the walls:

do de
Nuo = [a?] Y0 and Nu1 = l:d—y—v] Y=1’ (24)

respectively.

Reynolds analogy factor
At the walls y = 0 and d the Reynolds analogy
factors are defined by:

Nuo/Cfo Rey and Nul/Cf1 Rey,

respectively.

Flow rate
The flow rate per unit length of section is

W—"pudy = Nd[pUudy. (25
0 1]

4. RESULTS FROM CONSTANT FLUID
PROPERTY MODEL

Equations (16)-(19) can be easily integrated
for the special case of constant fluid property by
setting u = pr and k = k,. The results are:

U= Y — Y2 +nY, (26)
and

6 = Y{l — (w31 + WY — 1) —

401 +m¥2—1) +2¥3— D]} 27)
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Neglecting the viscous dissipation contribution
in (27) these constant fluid property results yield:
i =} Ne(1 + 3n), )
{ Rey = 24/(1 + 3n),
Cro Rer = 12(1 + n)/(1 4 3n),
Cr1 Rer = 12(—1 + n)/(1 + 3n),
Nug = Nu; =1,

N L (28)
u
[éf Rer]o = (1 + 3m)/12(1 + n),

Nu
[cf Re,] =+ 3m/12(=1 +n),

Wi(Ned) = prlt + $ 7. J

The special case of Poiseuille flow is obtaint?d
when n = 0. For Couette flow the constant ﬁg\d
property results, neglecting viscous dissipation
are:

U=0=Y (29)

and the relevant flow and heat-transfer para-
meters are:

.V 1
u——E,
CsRey, =4 for 0 <<y < d,
Nu L (30)
——— =1 <y <
C Res 3 for 0 <y < d,
w
a= ter ]

5. DISCUSSION OF VARIABLE FLUID PROPERTY
RESULTS FOR WATER

Flow and heat-transfer characteristics have
been evaluated for a wide variety of cases. The
computations have been carried out using the
Bristol University IBM 1620 Computer. It must
be emphasized that since viscous dissipation has
been found negligible the thermal profiles for
various Tp and T are evaluated without requiring
knowledge of the velocity profiles. Physically
this implies that heat is transferred between the
plates by conduction alone. In the following
discussion the abbreviations C.P.F. and V.P.F.
will be adopted for denoting constant property
fluid and variable property fluid results respec-
tively. In Figs. 2-8 the constant fluid property
results, based on the reference temperature
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Table 2
Temperature, T Couette, U Poiseuille. {/
yid 0-10 0-40 0-100 CPF. 010 0-40 0-100 C.P.F. 010 G- 40 0100
0 0-:0000 0000 0-:000 000 00000 00000 00000 00000 00000 00000 0-0000
005 05105 2153 5709 005 00428 00284 0-0156 00475 00430 0-0323  0-0203
010 1-020 4-285 11-29 0-10 00863 0-0588 00346 00900 00823 00637 0-0425
0-15 1527 6399 16:74 0-15  0-1305 00913 00565 01275 01179  0:0941 0-0661
0-20 2034 8495  22-08 020 01755 01259  0-0817 01600 0-1495 01229  0-0903
025 2540 10-57 27-32 025 02212 01652 01102 01875 01771 01496  0-1151
030 3044 12:63 32-48 030 02677 02019  0-1422 02100 0-2005 01740  0-1393
0:35 3547 14-68 37-57 035 03149 02432 01778 02275  0-2195 01956  0-1623
0-40 4049 16:70 42-60 040 03629 02869 02171 02400 02340 02139  0-1836
045  4-551 1871 47-57 045 04117 03328 02601 02475 02439 02284 02023
0-50 5051 20-70 52-49 050 04613 03812 03069 02500 0-2489 02387  0-2176
0-55 5550  22-68 57-37 0-55 05116 04319 03576 02475 02490 02444 (2288
060 6049 2465 6221 060 05627 04850 04122 02400 02440 02448  0-2350
065 63546 2660 6701 065 06145 05406 04709 02275 02336 0-2396 02334
070 7042 2855 71-79 070 06672 05986  0-5337 02100 02179 02281 0-2292
075 7538 3048 76-54 075 07207 06591 06006  0-1875  0-1965 02100 02153
0-80 8032 3240 81-27 080 07749 07222  0-6717 01600 0-1694 01846  0-1930
0-85 8526 3432 86-00 0-85 0-8300 07877 07472 01275 01363 (1514 0:1613
090 9018 3622 90-70 090 0-8859 08559  0-8271 0-:0900 00972  O-1100 1192
095 9510 3811 9536 095 09425 09266 09113 00475 00518 00597  0-0657
1-:00 10-00 40-00  100-00 1-00  1-0000 1-0000 1:0000 00000 00000 00000 00000

T: == 3(To -+ Th), are indicated using a dashed
line.

Temperature profiles

In Table 2 some representative profiles are
given for Ty = 0°C and T == 10, 40 and 100°C,
respectively. It is to be expected that the differ-
ence between C.P.F. and V.P.F. thermal profiles
is not appreciable since the conductivity varies
slowly with the temperature. As k increases with
increasing T in the interval 0-100°C, the V.P.F.
temperature will always be greater than the
C.P.F. temperature at any point between the
plates.* For example, in an extreme case with

* This result follows directly from equations (17) and
(18). On neglecting viscous dissipation, the relevant
solution is [see expression (B.11)]

2] 1
[kdB = Y| kde.
0 [}
For the range To < T < T, let
k = ko(l + 26), 2 > 0.
Then
0 -+ $A02 = (1 + AT,
and there result the inequalities:

5], 1 2]
oY 1o oY h

provided A > 0.

To = 0°C and Ty = 100°C, a maximum differ-

ence of -+6:5 per cent occurs between the
C.P.F. and V.P.F. temperatures at v/d == 0-4.
In Fig. 2 the thermal profile and related data
on p, u and k are given graphically for the case
To = 0°C and Ty == 100°C.

It is interesting to note that the effect of
variable k on the temperature profile in water
may, in fact, be much greater than that due to
the viscous dissipation in flows which are
laminar. i.e. Re <7 2000. Returning to the
C.P.F. example discussed in Section 2, it can be
shown, on using expression (27) that when
yid - 4 the C.P.F. model with viscous dissipa-
tion gives T == 15-00005°C, whilst the V.P.}.
computed value is 7" =+ 15052 C.

Velocity profiles

The effect of variable viscosity on the velocily
profiles is most clearly seen from some of the
computed results on Couette flow; these are
given graphically in Fig. 3 and in tabular form
in Table 2. If the plate at rest is maintained at
temperature Ty and the moving plate is main-
tained at temperature 7T ;> To then as T3
increases the velocity at any point decreases. The
reason for this is that . decreases with increasing
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FiG. 2. Thermal profile © and related values of p, u and k& for the case To = 0°C and 71 = 100°C.

T and so the moving hot plate exerts less shear
force on the layer on fluid adhering to the plate.
On the other hand if 1 < Ty and Ty increases
the velocity at any point is increased since
greater shear force is transmitted to the fluid
by the cold moving plate.

In Table 2 and Fig. 4 some profiles are given
for the V.P.F. Poiseuille flow. The form of
presentation of these results can be a little mis-
leading due to the presence of the viscosity
in the representative velocity

dzl opp
Nr = 2 Mr [— ?}E] '
A comparison of the V.P.F. profiles with the

C.P.F. profile indicates that maximum velocity
occurs between the central axis and the heated

wall. The V.P.F. profiles can be compared with
one another provided the pressure gradient and
distance between the plates is the same in each
case. Thus, for example, at y/d = % the ratio

u(0, 100)/u(0, 10) =
[s U(0. 100)]/[uso U(0, 10)] = 2-54.

In fact if &p p/ox and d are kept fixed the velocity
is increased on increasing the temperature of the
liquid.

In Fig. 5 velocity profiles are given for mixed
V.P.F. Poiseuille and Couette flows. Here the
V.P.F. and C.P.F. profiles can be compared
with one another since the value of the reference
viscosity u, is the same in each case. When the
plate velocity and the pressure gradient induced
velocity Ny are equal (i.e. n = 1), it is seen that
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FiG. 3. Variable property velocity profiles in Couette flow for various wall temperature conditions (7v, 71).

velocity overshoot occurs in the V.P.F., profile
for To = 100°C and T1 = 0°C, but does not
occur in the C.P.F. profile. Compared with the
C.P.F. profile, the V.P.F. profile has increases in
velocity due to (a) the supply of heat at y =0
which lowers the viscosity in this region and so
produces a greater pressure gradient force and
{(b) the extraction of heat by the cold moving
plate at y = d, which now transmits greater
shear force. The total contribution produces the
observed velocity overshoot. When the plate
velocity is adverse to that induced by the
pressure gradient, then velocity undershoot is
seen to occur in the profile for Ty = 0°C,
T1 = 100°C and n = —1. Velocity overshoot
does not occur in the profile for Tp = 0°C,
T1 = 100°C with n = 1 as the effect of extracting

heat at the fixed plate and supplying heat at
the moving plate both result in a considerable
reduction in velocity as compared with the
C.P.F. profile; there is also a point of inflexion
at y/d = 0-675, which does not occur in the
V.P.F. profile.

In Fig. 6 velocity profiles are given for the
two cases Ty = 0°C, Ty = 100°C, n == 42 and
To = 100°C, T1 = 0°C, n == -2, respectively.
As the plate velocity is 2N, the Couette flow will
always dominate the Poiseuille flow. This is
especially true when heat is extracted at the
moving plate. It should be noted that since
viscous dissipation is negligible, and the gravita-
tional buoyancy force has been neglected in the
evaluation of the velocity profiles the various
solutions presented are not all independent.
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For mixed Poiseuille and Couette V.P.F. flow:
U(Ty, T1, n; y/d) =
U(Ty, To,/ n; 1 — y/d) + n,
and for Couette V.P.F. flow:
U(To, T1; yid) =1 — U(Th, To; 1 — y/d). (32)

@D

Flow rate

For the case of Couette flow the flow rate W
is given in Table 3 for various wall temperatures
lying in the range 0-100°C. The quantity
W/(Vd) decreases when heat is supplied to the
system. In particular for 7o =71 =0°C,
W/(Vd) = 04999 but when Ty =0°C and

T1 = 100°C, W/(Vd) = 0-3619, a reduction of
twenty-three per cent in flow rate; this is due to
reduced viscosity at the heated plate as pre-
viously discussed. It should be noted that
although the dimensionless average velocities
U = @i/V are related by the expression
U(To, Th) = 1 — U(Th, To), (33)
no such simple expression is true for pU. For
the range 0-100°C the maximum flow rate
for C.P.F. Couette flow will occur when
To = 100°C and 71 = 0°C. If the C.P.F. model
[equation (30)] is used in this case the error in
W/(Vd) will be twenty-five per cent.
Numerical results for V.P.F. Poiseuille flow
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Table 3
To T1 U W/(vd) CsRe: Nuo/CroRer Nur/Cr1Rer
0 0 0-5000 0-4999 4 -000 0-2500 0-2500
10 0-4742 0-4741 4-205 0-2432 0-2330
40 0-4208 0-4190 4-626 0-2340 0-2033
70 0-3903 0-3852 4-872 0-2312 0-1906
100 0-3714 0-3619 5-037 0-2298 0-1854
10 0 0-5258 0-5257 3-792 0-2584 0-2697
10 0-5000 0-49985 4-000 0-2500 0-2500
20 0-4780 0-4774 4175 0-2446 0-2348
40 0-4439 0-4417 4-448 0-2375 0-2154
70 0-4097 0-4041 4-728 0-2318 0-1995
100 0-3877 0-3774 4-919 0-2284 0-1923
40 0 0-5792 0-5783 3-362 0-2798 0-3220
10 0-5561 0-5549 3-550 0-2699 0-2975
30 0-5166 0-5138 3-867 0-2553 0-2620
40 0-5000 0-4961 4-000 0-2500 0-2500
70 0-4606 04527 4-319 0-2384 0-2262
100 0-4327 0-4196 4-555 0-2303 0-2138
70 0 0:6097 0:6067 3-120 0-2977 0-3611
10 0-5903 0-5867 3-282 0-2874 0-3339
30 0-5550 0-5495 3-565 0-2713 0-2933
70 0-5000 0-4888 4-000 0-2500 0-2500
80 0-4891 04762 4-088 0-2458 0-2437
100 0-4700 0-4533 4-245 0-2389 0-2337
100 0 0:6286 0-6225 2:976 03137 0-3889
10 0-6123 0-6054 3-115 0-3036 0-3606
40 0-5673 0-5569 3-475 0-2803 0-3019
70 0-5300 0-5148 3-764 0-2635 0-2694
100 0-5000 0-4789 4-000 0-2500 0-2500

rates are given in Table 4; in Fig. 7 the quantity
W/(Nyd) for Tp = 0, 10, 40, 70, 100°C is plotted
as a function of T, = ¥(Tp + T1). The various
values computed for the range 0-100°C are
bounded by the curves for Ty == 0°C and 100°C
and by the C.P.F. curve, which is also an
envelope of the V.P.F. results. For V.P.F.
Poiseuille flow pU(To, T1) = pU(T1, To) and so
curves for fixed 7, intersect. Consider the
results when 7Ty = 40°C. There is a maximum
in W/(Nyd) at T = 40°C, but this does not occur
in the actual flow rate W. If d and dpp/éx are
kept fixed W increases monotonically with
increasing 7T, i.e. with increasing thermal

capacity* of the system; when

To — 40°C  then W/{d[— ‘?@” —
2 ox

1:59, 1-84, 2-32, 2-55, 3-28 and 3-99

for T = 20, 25, 35, 40, 55 and 70°C, respec-
tively. Again, if T;, [@pp/ox] and d are kept fixed
the V.P.F. flow rates are not independent of

* The thermal capacity of the system is defined as
y
| pCpTdy = p,CypTid on the C.P.F. model. The V.P.F.
0

value will be close to this since p, Cp and k-data vary
slowly with 7.,
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Table 4

102 Nug 110'“' . qu

Ty T v W/(Nyd) {Rer CroRer  Cr1Rer Nug Niny CroRer CriRer
0 0 01667 0-1666 24-00 12:00 -12-00 1-000 -1-000 8:333 8333
i0 0-1660 0-1660 24-09 12-67 -—11-42 1-023 —0-9798 8072 8577
40 0-1597 0-1593 2505 14-51 —10-54 1-0825 —0-9407 7470 8924
70 0-1526 01512 2622 15-99 — 10235 1126 —0-9288 7047 9075
100 0-1465 01440 27-30 17-16 - 10-14 1-1575 09337 6745 9-208
10 0 0-1660 0-1660 2409 11-42 -12-67 09798 -1-023 8571 072
10 01667 0-1666 24-00 12:00 —12:00 £-0600 - 1-000 8-333 8333
20 0-1661 0-1660 24-08 1253 - 11-54 1-022 —0-9804  B-152 518
40 01631 01625 24-53 13-64 —10-89 1-056 — 09581 7-744 §800
70 0-1569 0-1554 2549 15-05 10-55 1-096 —~0-9431 7283 8942
100 01510 0-1482 26-49 1622 - 10-27 1123 —0-9458 6928 9210
40 0 0-1597 01593 25-05 10-54 —14-51 0-9408 - 1-0825 8924 7-462
10 01631 0-1623 24-54 10-89 --13-64 0-9381 —1-056 8-800 7744
30 01664 0-1653 2405 11-62 ~12-42 0-9875 - 1013 8-496 8-156
40 0-1667 0-1654 24-00 12-00 —12-00 1-000 —1-000 8333 8333
70 0-1647 0-1623 2428 13-10 —11-19 1-030 —0-9771 7-862 8735
100 0-1608 01570 24-87 14-11 10-76 1-049 -—0-9740 7438 9-052
70 0 01526 01512 2622 1024 15985 09288 11126 9075 7:047
10 01570 01554 2549 1044 1505 09431  —1096  9:029 7283
30 01629 01608 2455 1092; 1363 09671 1046 8852 7673
70 01667 01629 2400 1200 1200 1000  —1:000 8333 8333
80 01665 01623 2409 1227 1175 1005 09962 8188 8479
100 01654 01602 2418 12:81 (136 1014  —09921 7914 8731
100 0 0-1465 01440 27-30 1014 —17-16 0-9337 — 11575 9-208 0745
10 01510 0-1482 2649 1027 ~ 1622 09458 — 1123 9210 6928
40 0-1608 01570 24-87 10:76 --14-11 09740 —1:049 9-052 7-438
70 01654 0-1602 24-18 11-36 - 12-81 09921 -1-014 8731 7914
100 01667 0-1596 24-00 12-00 - 1200 1-000 - 1-000 8333 8333

To and Ti. From Fig. 7, taking T, == 30°C time decreases the velocity due to the pressure

Wi(Nsd) = 0-154, 0-160, 0166, 0-164 when
To =90, 10, 30, 40°C, respectively. Since
;(—](T(), T1) = pwU(Tl, To), there will be a maxi-
mum flow rate when To =T = T, = 30°C,
i.e. when the fluid is at a uniform temperature
of 30°C across the channel.

In Table 5 flow rates are given in tabular form
for V.P.F. mixed Poiseuille and Couette flow
when n = 41; in Fig. 8 results are given
graphically for n = +1 and +2 together with
the related C.P.F. values. Here the situation is
complicated since a reduction in heat input
increases the Couette velocity but at the same

gradient induced Poiseuille flow. For n == -1
and -2 and fixed Ty, apD/ax and d, the ﬁow mtc
increases with increasing T,. In particular, for
the C.P.F. model, the flow rate is zero when

_po
ox |’
Typical results for the V.P.F. (computed using
Tables 2 and 3) are: T = 0°C and T1 = 10, 40,

2
L d 1
2 Hr

70, 100°C, n = —0-3502, --0-3801, ~-0-3926
and —0-3979, respectively, To = 100°C and
T1 =0, 10, 40, 70°C, n = -0-2314, —0-244%,
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FiG. 7. Variable property Poiseuille flow rates for various values of Ty as a function of Tr = ¥(To + Th).

—0-2819 and -0-3111, respectively. These
results indicate that when heat is supplied at the
moving plate, a larger adverse velocity is required
for the V.P.F. than in the C.P.F. model to
produce zero flow rate.

Nusselt number

The heat flux across the channel is constant
and is independent of the flow rate. In Table 4
the wall Nusselt numbers Nup and Nu, are given,
and these are simply related by the expression:

Nup ki1

Nuw ko’
it follows from (34) that Nuo > Nuy if To < Th,

since k increases with increasing 7. When
To=0°C and d=1 cm, the heat flux ¢;

(34

[defined by expressions (24)] required to produce
the temperatures 71 = 10, 40, 70, 100°C are
485, 2052, 3731, 5460 kcal/m?2 h, respectively.

Friction factor, skin friction coefficient and
Reynolds analogy factor

These various dimensionless quantities are
given in Tables 3, 4 and 5 for Poiseuille, Couette
and mixed Poiseuille-Couette flow respectively.

For Poiseuille flow the dimensionless group
{ Rey varies slowly for fixed To and variable T1.
Hence if dpp/ox and d are kept constant the
friction factor { will decrease when heat is
supplied to the flow. The skin friction coefficients
Cyo and Cj; follow the same trend although the
rate of decrease at the cold wall will be much
less than that at the heated wall. It should be
noted that the absolute magnitudes of the wall
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Table 5
_ n-= ot 7 i

T() T] U W/(M-d) CR(’r Cf()R(’; ('f1Rer 0 W;’(N;~{/) lRe,- 4 .fuRL’r (‘/‘; RL’;

0 0 | 06667 06665 6000 6000 0-0000 0-3333  -0-3333 - 12:00 0-0000 1 2'0()

10 r 06402 0-6401 6248 6400 0-1518 0-3081 —0-3081 12-98 0-3550 1263

40 05805 0-5783 6890  7-345 0-4541 02611 - 0-2598 --15:32 1-416 13-90

70 05429 05365 7-368 7995 0-6272 02378 02340 16-82 2-257 14-56

100 | 05179 0-5058 7-723 8467 0-7437 02249 - 02179 - 17-78 2861 14-92

10 0 06919 06919 35782 5623 - 0-1581 03598 -0-3597 1112 02702 113y

10 0:6667 06665 6000 6000 0-0000 0-3333 03333 - 12:00 0:0000 1200

20 0-6441 06441 6210 6340 0-1301 03119 03114 12:825 02954 12:53

40 0-6069 06069 6590 6918 0-3278 -0-2808  --0-2792 - 14245 0-8906 1333

70 0-5666 0-5664 7-059  7-585 0-5261 02528 --0-2487 - 15-82 1-677 14-14

100 0-5388 0-5388 7424  8-086 0-6616 -0.2367 -0-2292 16-90 2-288 1461

40 0 07389 07376 5414 4913 0-5005 -0-4194  --0-4191 9-535 06284 1016

10 07192 07174 5562 5214 0-3477 -0-39305 -0-3924 - 10-13 05062 1068

30 06829 06791 5-857 5757 0-1003 -0-3503 03484 - 11-42 01838 i1-60

40 06667 06614 6000 6000 0-0000 0-3333 0-3307 12-00 0-0000 12:00

70 06253 06149 6397 6632 0-2353 0-2959 - 02904 13-52 0-5676  12:95

100 05935 05766 6739 7144 0-4048 02719 0-2627 1471 1-096 1362
70 0 0-7622 07580 5-248  4-544 0-7041 -0:4571  —0-4555 8751 0:7450 9496
10 07472 07421 5353 4786 0-5676 -0-4333 04314 9-230 0-6879 9918

30 07179 07104 5-571 5-235 0-3363 --0-3921 0-3887 1020 0-5070 1074

70 06667 0-6517 6000 6000 0-0000 0-3333 03292 12-00 0-:0000 12:00

80 0:6556 0-6385 6-101 6167 0-0655 -0-3226 - 03139 12-:40 01375 1226

100 06354 0-6134 6295 6476 01811 --0-3045  --0-2931 - 1313, 04109 1272
100 0 07751  0-7665 5-161 4-331 0-830i -0-4821 - 04785 - 8298 0-7990 y-097
10 07633 07536 5-2405 4531 0-7097 -0-4612  -04572 - 8672 0-7728 9-445

40 0-7281 07139 5-493 5-084 0-4094 04064 —0-3999 9-841 0-5912  10:43

70 0-6954 06750 57515 5:572 0-1799 —-0-3646 03546 -10-97 03156 1129

100 0-6667 0-6386 6000 6000 0-0000 - 03333 -0-3193 12-00 0-06000 12:00
Reynolds analogy factors are not identical for a ko Nup/Cyro Rey == k1 Nur/Cyr Rep.  (35)

V.P.F.; in the case of Ty = 0°C and T -= 100°C
these differ by 37 per cent.

In Couette flow the shear stress at any point
across the channel is constant and so the skin
friction coeflicients will be the same at both
fixed and moving plates. Once again, for fixed
V and d, the skin friction coefficient is reduced
when heat is supplied to the system. Reynolds
analogy is exact in this case since both shear
stress and heat flux remain constant at any
point across the channel. The difference between
the wall Reynolds analogy factors quoted in
Table 3 is due to the definitions taken for Nug
and Nuip; in fact

For mixed Poiseuille-Couette flow shear
friction coefficients are given for n -~ -1 | and
n = - 1. These are useful as a guide for deciding
the appropriate wall temperatures producing
-1, and velocity
undershoot when # -= --1. Obviously these
effects will occur when the skin friction coeffi-
cients have opposite signs; for example, when
To = 40°C:

velocity overshoot occurs when s = ;1.

Ti - 40°C, i.e. by cooling the moving plate

velocity undershoot occurs when n == -1,

71 ~ 40°C, i.e. by heating the moving plate.
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APPENDIX A
Data for saturated water

The data for saturated water have been taken
from tables recently compiled by Mayhew and
Rogers [13]; the smoothed experimental values
of the density, specific heat, viscosity and con-
ductivity for 0 << T < 100°C are given in Table
1 in metric units. Although the specific heat data
is not used in the present paper, it has been
included for completeness and will be used in
later work.

There are two methods of fitting data of the
above type: (a) by collocation and (b) by the
method of least squares. The theoretical expres-
sion used can take the form of either an algebraic
expression or a series of orthogonal poly-
nomials. Each of these methods have well-known
pitfalls, especially when the data has an appre-
ciable scatter. If this is the case, method (b) must
be employed. However, the data for saturated
water are now accurately known and possibly
only the last figure quoted may be in error. Thus
the method of collocation is used.

Algebraic expressions are chosen in the form:

G. POOTS and M. H. ROGERS

Py

L) 10

7t "
———— -

poe N exp(Cik — N exp(Dith)
— G

where 0 - (T~ 50)/50.

SN e § Bi,
P i
AL

Consider the p-data in the range 0-100°C.
If n = 2 values of p at 7 = 0, 50 and 100°C are
used to determine Ag, 41 and A4z # is increased
by 2 and p values at T - 0(25)100°C are used
to determine the 4; for/ = 0(1)4. The calculation
is then repeated with # - 10 and 20. It is found
that these theoretical expressions improve in
accuracy with increasing n provided »n = 10.
The accuracy being checked on comparing
values obtained using the theoretical expression
with experimental values at points intermediate
to those used in the fitting process. However,
when n = 10, unavoidable small oscillations
begin to appear in the theoretical expression at
these points. For n == 20 these oscillations have
quite alarming amplitudes, especially near the
end points at 7 -— 0 and 100°C. For this reason
the value of the derivative dp/dT, evaluated
using the theoretical expression, is in serious
error when n is large.

The results for n = 10 have been accepted for
the p-data and as can be seen in Table 1 are in
error by less than 0-1 per cent. Similar accuracy
for the Cp-data was achieved with » == 10. The
u-data have been fitted precisely, as this data
has already been smoothed in {13] after taking
logarithms. For the k-data with »# = 10 the
accuracy obtained was <01 per cent for
0 <. T <2 85°C. The theoretical expressions re-
veal a spurious maximum near 95°C. In fact a
rather diffuse maximum does occur in the
experimental data in the range [15-135°C.
It is possible that these spurious oscillations
found in the theoretical expressions near 100°C
could be avoided by fitting in the range 0-140°C
and using the expressions for the range 0-100°C
only.

It is interesting to note that the inversion
temperature near 4°C has been adequately pre-
dicted by the p-expression. For problems
involving forced convection an accuracy of
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Table 6
i Ag B; Ci D;
0 0-988 130 0988 610 —5-208 294 — 6470986
1 -0-021 761 0-003 382 —0-836625 0-095 773
2 —0-010 265 —0-002976 0-228 220 —0-069 060
3 —0-013 377 0-004 571 —0-072 689 0027 692
4 —0-001 000 0-081 685 0-036 071 0-204 396
5 0064 100 —0-026187 —0-025 843 —0-145 549
6 0-037 889 —0-275 517 —0-041 654 —0-793 563
7 —0-096 266 0-034 689 0018216 0-309 234
8 —0078 639 0-384 833 0-072 355 1-126 945
9 0-046 325 —0-015495 —0-006 439 —0-179732
10 0-042 705 —0-180 145 —0-037178 —0-523 533

<0-1 per cent in the fitting procedure is sufficient
for all practical purposes; the coefficients Aj,
Bi, C;, Dy and i = 0(1)10 for saturated water
are given in Table 6. However, for free con-
vection flows a more careful appraisal of the
p-data is required, especially in the range 0°C-
10°C.

APPENDIX B
Numerical solution of equations (16)—~(19)
New variables y; and ye are introduced as
follows :

k 7
and y2=7y, (B

kr
where the prime denotes differentiation with
respect to Y. The boundary value problem defined
by equations (8)—(10) is then equivalent to the
system of first order equations:

n=0

.k
K1 =",gy2, y1(0) =0, (B.2)

Ve = —yr’fj (B — 2(Y — ) y2(0) = a,
(B.3)

’

v = —2Y — %)’ff ,y3(0) = 0, (B.4)

y, = ’: y4(0) = 0. (B.5)

where
1 N

" Tk(T1 — To)

H.M.—S5A

is a dimensionless constant. The dimensionless
velocity is

U = ys(Y) + B yaY). (B.6)

In the above system of equations the unknown
constants of integration « and 8 are determined
such that the conditions &(1) =1 and U(1) =~n
are satisfied. It follows that

y(l) =1, (B.7)

and

B = In — y3 (D]/ys(1), (B.8)

and so the equations (B.2)-(B.5), together with
the conditions (B.7) and (B.8) must be solved by
an iterative scheme.

Except in the case of high viscosity oils, the
parameter y, is small and so for most liquids a
first approximation to the above equations is
obtained by putting y = 0. On neglecting
viscous dissipation (yr == 0) in equation (B.3)

y2(Y) = a = const. (B.9)
and (B.2) becomes
.k
=g % »1(0) = 0. (B.10)
T

On elementary integration and using condition
(B.7),

1

1
a :];Jkdyh
1]

or in terms of the physical variables:
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]
o kT(Tl B T())J /C(T) dT

‘y

(B.11)

Given the theoretical expression for the k-data
the constant o is determined by numerical

T
integration; in Table | the [ k& d7 is tabulated

{

for water. Equations (B.10), (B.4) and (B.5) are
integrated simultaneously and B8 is calculated
using expression (B.8). Using this value of 8
equations (B.2) and (B.3) for non-zero y, are
solved, by an iterative method, to determine «
consistent with (B.7). Once a new value of «
is available the equations (B.2)—~(B.5) are solved
simultaneously to determine from (B.8) the next
estimate of 8. This process is repeated until the
required accuracy is obtained in yi, y3 and yi,
i.e.in @ and U.

For the special case of Couette flow equation
(B.3) is replaced by:

yy yr’; B2, 15(0) = 0,  (B.12)
equation (B.4) is omitted and the condition (B.8)

is replaced by

]
ya(l)’
The procedure already described for solving the

more general equations (B.2)-(B.8) is also
applicable to this case.

B (B.13)

G. POOTS and M. H. ROGERS

The numerical integration of the above first
order equations may be performed using the
Runge-Kutta method. Once & and ® are known
with accuracy the dimensionless average velocity
U and the dimensionless mass flow (1/p,) pl/
are found onintegrating the first order equations:

Voo v vs0) 0. (B.14)
Yo o ya. ¥e(0) O (B.15)
, /)
R A L (1) IO {B.16)
Pr
and
. p ]
Vo= Y ys(0) = 0. (B.17)
.
In the general case with pressure gradient
occurring:
~ L
U~ fUdY = ps(l) -+ Bys(l)
()]
(B.18)

1

[ — |
pl == J pUdY o vo(l) + B r(i):
Pr

Pr
O
for Couette flow only equations (B.13) and
(B.17) are integrated, yielding:
— | —
U ye(l)/y4(l)sp pU = yy(D)/ya(1)  (B.19)
¥

Résumé—L écoulement laminaire entiérement développé d'eau dans une conduite verticale est ex-
aminé, en employant les équations complétes du mouvement avec les valeurs expérimentales (dans la
gamme 0-100°C) pour la viscosité, la conductivité, la chaleur spécifique et la densité. Bien que les effets
locaux des variations de ces quantités sont évidemment faibles, I'effet cumulatif est sensible pour des
différences de température modérées. En conséquence, on a insisté sur I'évaluation des propri€tés
intégrées telles que le flux de masse et le transport de chaleur.

Des écoulements de Poiseuille, de Couetle et de Poiseuille-Couette (mixtes) sonl examingés
pour une gamme de différences de températures pariétales et les effets de la dépendance de ces pro-
priétés en fonction de la température sur les profils de vitesse et de température sont discutés en détail.
Les nombres de Nusselt pariétaux, les débits, les coefficients de frottement, les coefficients de perte

de charge et les facteurs d’analogie de Reynolds sont examinés pour tous ces régimes.

Zusammenfassung—Unter Verwendung der vollstindigen Bewegungsgleichungen mit Versuchswerten
(im Bereich von 0° bis 100°C) fir die Zihigkeit, Leitfahigkeit, spezifische Wirmekapazitit und
Dichte wird die ausgebildete laminare Stromung von Wasser in einem senkrechten Kanal untersucht.
Obwohl die lokale Auswirkung bei Anderungen diesser Grossen natiirlich klein ist, wird ihr Gesamtein-
fluss bei geringen Temperaturunterschieden bedeutend. Demnach wurde der Berechnung der Integral-
grossen wie Massenstrom und Wiarmeiibergang besondere Bedeutung beigemessen.
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Poiseuille-, Couette- und gemischte Poiseuille-Couettestromungen werden fiir einen Bereich von
Wandtemperaturunterschieden untersucht und die Einfliisse der temperaturabhidngigen Stoffgrossen auf
die Geschwindigkeits- und thermischen Profile im einzelnen diskutiert. Fiir alle diese Bereiche
werden Wandnusseltzahlen, Strémungsgeschwindigkeiten, Oberflichenreibungsbeiwerte, Reibungs-

beiwerte und analoge Reynoldszahlen berechnet.

Ansoranna—PaccMaTpUBaeTCA HOJIHOCTRIO PABBHUTOE JAMMHAPHOE TeYeHHe BOALL B BePTHKAJI-
BHOM KaHale C IIOMOIIBI0 CHCTEMBl YDABHEHWIt NBUKEHUS, UCIOJb3YA HKCIEPAMEHTAIbLHELE
snavennd (B o6aactu or 0° no 100°C.) BA3KOCTH, TEIIOPOBOLHOCTH, YAENBHOM TENI0eMKOCTHI
u nnorHocTn. He cMOTpA HA TO, 4TO JIOKAJbHHE H3MEHEHHA 9THX BeJNYMH He3HAUHTENILHHI,
ux obmuit addeKT cymecTseHeH GJIA CPeAHUX TeMIepaTypHHIX pasHocreit. B coorBercTBUNM C©
5THM, 06pamanzock ocofoe BHUMaHNE HA ONEHKY HHTErPAJBHEIX XaDAKTePUCTHK, TAKAX KaK
TOTOK MAcCCH U Terioo6MeH.

Uccaegonanuce Tevennd llyaazeitnn, Kysrra u cmemannoe tevenue Ilyazelina—IysTra B He-
KOTOPOM JMAIa30He MepenajoR TeMIepaTyphl y cTenky. II0ApoGHO paccMaTpuBaIoCh BINAHME
3aBUCHMBIX OT TeMIepaTypH CBOHCTB HA NPOPUIN CKOPOCTH M TeMIeparypol. [as Bcex
pexRMMOB mpousBefen paccdeT yucex HyccenbTa y CTeHKM, MACCOBOTO PAacXofa UAKOCTH,

K020OUIMEHTOB TIOBEPXHOCTHOTO TPEHUA, TPEeHNUA U aHaJorun PeitHomnbjca.
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