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Abstract-The laminar fully developed flow of water in a vertical channel is examined, using the 
complete equations of motion with experimental values (in the range 0-KKK) for the viscosity, 
conductivity, specific heat, and density. Although the local effects of variations in these quantities are, 
of course, small, the cumulative effect is significant for moderate temperature differences. Accordingly, 
emphasis has been placed on the evaluation of integrated properties such as mass flow and heat 
transfer. 

Poiseuille, Couette and mixed Poiseuille-Couette flows are investigated for a range of wall tempera- 
ture differences and the effects of the temperature dependent properties on the velocity and thermal 
profiles are discussed in detail. Wall Nusselt numbers, flow rates, skin friction coefficients, friction 

factors and Reynolds analogy factors are evaluated for all these regimes. 

NOMENCLATURE u, 
Ar, Bi, Ct, Dr, coefficients; U = u/N,, 
c P, specific heat at constant pres- ?’ = nN,, 

sure, Cal/g degC; K 
4 distance between the plates, x, Y, 2, 

cm; Y = vld. 

velocity, cm/s ; 
dimensionless velocity; 
velocity of plate at y = d; 
flow rate, g/s; 
Cartesian co-ordinates, cm; 
dimensionless co-ordinate. 

Er = N,~/&,(TI - TO), 
r, , 

Eckert number; 

g, acceleration due to gravity; Greek symbols 

Gr = -,&I - po)gd3/& Grashofnumber; a, P, constants of integration; 

k, thermal conductivity, Cal/s cm 13 r9 coefficient of volumetric ex- 

degC ; pansion, l/degC; 

n = V/N,., dimensionless velocity of the yr = &Prr, a dimensionless quantity; 

plate; I*, viscosity, g/cm s; 
density, g/cm3; 

representative velocity g = (T - To)/@1 - TO), dimensionless 
related to the pressure temperature. 
gradient, cm/s; 

Nu, Nusselt number; 

P, pressure ; 
Pr = &,lk, Prandtl number ; 
Rer = prNrd/pr, Reynolds number; 
NulCrRer, Reynolds factor ; 
T, temperature, “C; 

-______ 
* Present address: Department of Applied Mathe- 

matics, University of Hull. 

Subscripts 

13% wall condition at y = 0, d 
respectively; 

r, reference condition; 

D, dynamic condition. 

1. INTRODUCTION 

THE MOST commonly used coolants in heat- 
transfer appliances are probably air and water. 

1515 
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A great deal of theoretical information on basic 
laminar flow and heat-transfer problems involv- 
ing air now exists in the literature. In particular 
for the compressible Iaminar boundary layer (see 
Stewartson [ 11) calculations have been performed 
with due allowance for variable physical pro- 
perties. Moreover, the study of a model gas having 
similar overall variable physical properties has 
proved extremely fruitful, since the equations 
of motion are then more tractable analytically 
and are more amenable to numerical analysis. 

To date it does not appear from the literature 
that the present quantitative knowledge of 
laminar flow with heat transfer in liquids is as 
satisfactory. One of the essential difficulties is 
that the properties of the two main classifications, 
namely metallic and non-metallic liquids are 
widely different. Even for the class of non- 
metallic liquids the results obtained for a given 
Aow and heat-transfer configuration with a high 
viscosity liquid are expected to differ from those 
obtained using a low viscosity liquid; for example, 
in the former viscous dissipation may cause 
appreciable changes, whilst in the latter it is 
negligible. 

However, considerable progress has been 
made in obtaining quantitative information on 
the effects of temperature-dependent viscosity 
in liquids. Attention has been given to the flow 
of oil between a journal and its bearing. As oil 
has a high viscosity significant changes in velocity 
and thermal profiles occur due to a temperature 
rise produced by viscous dissipation. Such effects 
have been considered in detail by Vogelpohl 121, 
Nahme [3], Hausenblas [4] and by Targ f5]. In 
these references the conductivity and density of 
the oil were assumed independent of the tempera- 
ture and the viscosity-temperature dependence 
was taken either in the form 

p * ~~.- a -+- bT or EL a exp (hT), 

where n and b are constants determined from 
experimental data. 

Another class of problem which has received 
quite considerable treatment in the literature is 
the forced convection by laminar flow in ducts 
and tubes. The work of Deissler 161 deals with 
the fully developed velocity and thermal profiles 
for the flow of liquid metals in a circular tube; 
here it is assumed that the heat-transfer rate 

varies slowly aiong the tube in the flow directIon 
and the fluid properties are variable along the 
radius. Maslen [7] has discussed the fully 
developed combined free and forced convection 
between vertical flat plates, which are maintained 
at constant temperature. In this work the 
variation of conductivity with temperature i\ 
neglected and the IL and p dependence WI\ 
approximated by the relations: 

r L a -t hT, p pr[l jW- ‘I;.)]. 

It should be noted that the latter approximation 
to the equation of state enables the flow and heat 
transfer to be evaluated without u priori informa- 
tion on Tr, the reference inlet temperature. 
Subject to the above relations Maslen presents 
an exact solution of the equations of motion 
when viscous dissipation is neglected. 

Allowing for a linear variation of viscosity 
with temperature the classical constant property 
Graetz solution for the thermal entrance length 
has been re-investigated. For a step change in 
wall temperature, an iterative procedure based 
on the isothermal solution as a first approxima- 
tion has been used by Boelter rt al. [S], Yama- 
gata [9], and Pigford [IO] to obtain first-order 
corrections in the velocity profile. Yamagata [9] 
and Pigford [IO] have also obtained first-order 
corrections in local heat-transfer coefficients at 
the start of the inlet region, where the velocity 
profite may be approximated by a linear function. 
The thermal entrance region for a circular tube 
has been further treated by Y rtng [ 1 I ] using the 
Pohlhausen type integral techniques of boundary 
layer theory. Yang treats the cases of a step 
change in wall temperature and a step change in 
wall heat flux. In his analysis the viscosity- 
temperature dependence is taken to bc 
/L--r a .+ bT; the inertia terms and density 
variations are neglected in the momentum 
equation; and finally viscous dissipation and 
heat transfer by radial convection are neglected 
in the energy equation, where the conductivity 
is taken to be constant. It should be noted that 
in the work of Pigford [lo] buoyancy effects are 
included on assuming that the density varies 
linearly with temperature. 

The above heat-transfer problems have been 
investigated using relatively simple relationships 
for the variation of viscosity with temperature. 
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Most liquids have a definite non-linear viscosity 
variation with temperature and this is true, but 
to a much less degree, of the temperature varia- 
tions in density, conductivity and specific heat. 
It is clear that a more careful study should be 
made of the validity of many of the approxima- 
tions used in the solution of these problems. 
However, a variable fluid property problem in 
free convection has been successfully solved by 
Sparrow and Gregg ff2]. Here the free convection 
flow of mercury due to a vertical heated flat plate 
is discussed. Two numerical solutions of the 
relevant boundary layer equations are given in 
which full account has been taken of variations 
in density, specific heat, conductivity and 
viscosity with temperature. From these solutions 
Sparrow and Gregg have shown that flow and 
heat-transfer characteristics can be obtained 
using constant property results in conjunction 
with certain reference temperature relationships, 

The authors feel that to understand the non- 
linear effects introduced by variable properties 
in liquids it would be more attractive to study 
carefully the behaviour of one specific liquid 
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under various basic flow and heat-transfer con- 
figurations. The liquid to be used in this series 
of papers is water. For water, except at very 
high pressures or at conditions near the critical 
point, the properties may be taken as equal to the 
saturated values at the appropriate temperatures. 
The data for saturated water has been taken 
from tables recently compiled by Mayhew and 
Rogers [13]. A discussion of the treatment of this 
data is given in Appendix A. It can be seen from 
Table 1 that even for small temperature differ- 
ences the variation in molecular viscosity is quite 
significant. In an extreme case the ratio of the 
viscosity at 0°C to that at 100°C is 635, and for 
such a temperature range it is to be expected 
that shear stresses and heat-transfer coefficients 
will be strongly dependent on the nature of the 
non-isothermal region of flow. Moreover it is 
assumed that fluid pressures and temperatures 
will be such that steam blanketing does not occur 
on solid boundaries. 

With the aid of a digital computer a series of 
calculations on laminar forced and free con- 
vection in ducts and boundary layer flows on 

TabIe 1 
_. __~.__ 

P CP p x 102 k x 103 lO;kdT 
0 

Experi- Experi- Experi- Experi- 
mental Formulae mental Formulae mental Formulae mental Formulae Formulae 
Value (A.11 Value (A.11 Value (A.11 Value (Al) (A.11 

~_ ___- ----~. 
0.01 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

2 
65 
70 
75 
80 
85 
90 
95 

100 

0.99980 
0.99990 
0.99970 
0.99900 
0.99820 
0.99701 
O-99562 
0.99404 
0.99216 
0.99020 
0.98813 
0.98522 
0.98328 
0.98039 
0.97752 
0.97466 
0.97182 
O-96899 
0.96525 
0.96154 
0.95784 

0.99980 
0.99992 
0.99970 
0.99910 
0.99820 
0.99704 
0.99562 
@99397 
0.99216 
0.99022 
0.98813 
0.98584 
0.98328 
0.98047 
0.97752 
0.97461 
0.97182 
O-96888 
0.96525 
0.96075 
0.95784 

1.0055 
13041 
lGO15 
0.9996 0.9997 
0.9989 0.9988 
0.9984 0.9983 
0.9979 0.9979 
o-9977 0.9977 
0.9979 0.9979 
0.9984 0.9982 
0.9986 0.9986 
0.9989 0.9989 
0.9993 0.9993 
1 .OOOl 0.9999 
1X008 1.0008 
l+lo15 1.0017 
1%3024 
lGO36 
1.0048 
1.0060 
lQO75 

1.0055 
1.0047 
1%X15 

1.0024 
1.0032 
1.0048 
1.0077 
1.0075 

1.782 
1.517 
1.306 
1.138 
1.002 
0.8903 
0.7975 
0.7193 
0.653 1 
0.5963 
0.5471 
0.5044 
0.4668 
0.4338 
04044 
0.3783 
0.3547 
O-3336 
0.3144 
02970 
0.2812 

1.782 
1517 
l-306 
1.138 
1*002 
0.8903 
0.7975 
0.7194 
0.6531 
0.5962 
0.5471 
0.5043 
0.4668 
04337 
0.4044 
0.3782 
0.3547 
0.3335 
0.3144 
0.2971 
02812 

1.316 
1.345 
1.373 
1.402 
1.431 
1.455 
1.476 
1.495 
1.514 
1.531 
1.548 
1.562 
1,574 
1.586 
1.596 
1.603 
I.610 
1.617 
1-624 
1.629 
1.631 

1.316 
1.346 
1.373 
1.403 
1.431 
1.455 
1-476 
1.496 
1.514 
1,532 
1.548 
1.562 
l-574 
1,585 
1.596 
1.604 
1.610 
i-615 
1.624 
1.639 
1.631 

OWOOO 
0.~6~ 
01346 
0.2040 
0.2748 
0.3470 
0.4203 
04946 
0.5698 
c6460 
07230 
0%x)7 
0.8791 
0.9581 
1.0376 
1.1176 
1.1980 
1.2786 
l-3595 
l-4411 
1.5231 

-- -___-__ ..--___ .._ 
H.M.-42 
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plane and curved surfaces will be carried out. 
Another interesting flow field is one which 
involves boundary layer separation on heated or 
cooled surfaces. The results using water will be 
different from those using air (as reported in 
[l]), since the variation with temperature of the 
viscosity of water is opposite to that of air. 

planes perpendicular to the y-direction the flow 
will be the same and it is assumed that the 
quantities describing the flow are functions of 
the y-ordinate only. 

The governing equations of motion are 

The purpose of this paper is to investigate the 
laminar fully developed flow of water between 
heated vertical plates. The main reason for 
treating this flow configuration is that the effects 
of variable fluid properties on the flow and heat 
transfer will be easy to analyse and will not be 
masked as in references 8-11 by effects due to 
hydrodynamic and thermal entrance lengths. where 

2. NON-ISOTHERMAL FLOW BETWEEN 

PARALLEL FLAT PLATES 

Consider the steady fully developed laminar 
flow between parallel flat plates of infinite 
extension in the vertical x-direction as shown 
schematically in Fig. 1. The plate at JJ -~ 0 is 

is the coefficient of volumetric expansion. 
The boundary conditions are: 

II :: 0, T : TO al J’ 0, ‘! 

II:- v, T- 7-l at ,l Z 
tl. 1 2 

The temperature dependent relations: 

FIG. I. Flow configuration. 

fixed and maintained at temperature TO; the 
plate at y = d is maintained at temperature Tl 
and moves with velocity V; a uniform pressure 
gradient [ap/ax] acts in the x-direction. In all 

(1) 

(2) 

(3) 

(4) 

f.5) 

are required to complete the above system of 
equations (see Appendix A). 

Consider now equation5 (I)-(S). The con- 
tinuity equation (1) states the assumption that 
the velocity and thermal profiles are fully 
developed. The pressure gradient QJ/?:s is con- 
stant and all other partial derivatives in the 
momentum and energy equations (2) and (3) 
now become ordinary differentials. Apart from 
the non-linearity introduced by the variable 
fluid properties (5) these equations are coupled 
by virtue of the gravitational body force, viscous 
dissipation and the compression work term. Due 
to the presence of the gravitational body force 
it is necessary to specify the temperature of the 
fluid at the inlet; this is denoted by Tr. 

In the usual fashion the body force is expressed 
in terms of the buoyancy force, on defining 

pu = 11 -~ /%. (6) 

where pr is the hydrostatic pressure that would 
be obtained at a particular level if the tempera- 
ture of the water was constant and equal to T, 



LAMINAR FLOW BETWEEN PARALLEL FLAT PLATES 1519 

throughout the system (see Ostrach [14]). Now 
(Q@x) = - prg and so the momentum equation 
(2) becomes : 

d du 

dy [ 1 p & 

Introducing the representative velocity 

and the new variables: 

Y+J+ @= 
V - To) 

r (TI - To) ’ 

these equations reduce to: 

2 Grr P - or 

Rer Kpo ’ [ 1 

(7) 

(8) 

(9) 

(10) 

(11) 

subject to the boundary conditions: 

U = 0, 0 = 0, at Y = 0, 1 

u=;,B=l,at Y=l. 
i 

(12) 
r 

In equations (10) and (11) the Reynolds number 

&. = ‘ed ; 
The Grashof number 

Gr 
r 
= _ Pr(P1 - Polg~3 . 

CL,2 ' 

and 

1 PLIN; 
” = 3 k,(Tl - To) 

= Er x Pr,, 

where the Eckert number 

N,” E = Jc- (TI - To) 
PT 

and the Prandtl number 

pr, = y . L I r 

To establish the order of magnitude of these 
terms, a constant fluid property model will be 
used to discuss the special case of the flow 
between fixed plates. Furthermore to avoid 
undue complications the inlet temperature is 
taken to be Tr = &(TI + TO), the arithmetic 
mean of the plate temperatures. The model 
fluid is assumed to have the properties: 

k = kr, LL = CL~, P = pr[l - MT - WI.* (13) 

The variable property equations (10) to (12) 
become : 

dsU --- = _ 
dYs 

da@ __ =_ 
dY2 [ 1 

,%NrTrd2 ” kr+ 
J(Tl - To)k, d2 + prg K 

] 

subject to the conditions: 

U(0) = U(1) = 0, 
O(0) = 0, O(1) = 1. (1% 

Consider the following example when the 
representative velocity Nr = 100 cm/s, d = -&cm, 
To = 10°C and Tl = 20°C. From Table 1, 
,015 = O-999 g/ems, ~15 = 1.138 x 1O-2 g/cm s, 
kls = I.402 x 10-s Cal/s cm degC and &=, = 
1.5 x lo-J/degC. From the above definitions 
Re, = 4.4 x 103,t Grr = 14, (GrJRe,) = 3.2 x 
IO-s, ‘yr = 1.9 x IO-4 and the maximum value 
of the compression term will be an order of 
magnitude less than y,.. In this latter connection 
it has been shown by Hanratty et al. [16], who 
studied a similar constant fluid property model, 
that computed temperature profiles were un- 
affected by density changes except at values of 
Gr,/Re, greater than 120. 

* In the evaluation of the order of magnitude of the 
compression work term in equation (11) it is sufficient 
to replace T by K. 

7 If the Reynolds number Re is based on the average 
velocity, then Re 2 iRer = 733. In an experimental 
investigation on fully developed turbulent heat transfer 
to water in thin rectangular channels, Levy et al. [15] state 
that their test data for Re < 104 may be in the transitional 
region between laminar and turbulent flow. 
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The results to be presented in this paper on 
the variable fluid property flow and heat transfer 
in water will relate to flow regimes with buoyancy 
force neglected, i.e. the relevant dimensionless 
group G~~/~e~ Q 1. In sacrificing this term 
the flow and heat transfer depend only on the 
four quantities d, (@~/ax), TO and Tl.* 

Returning now to the variable property 
equations (lO)-(12) and on neglecting the 
buoyancy force term and the work done against 
compression these equations become : 

(16) 

and Rev ==~ or iid/pr, 

where the average velocity 

The suffix I” is used to denote an arbitrary refer- 
ence temperature taken to be T, = &(ro + TI). 

The thermal boundary conditions are: 

O(0) --: 0, O(l) 7-z I. (18) 

In the general case when the pressure gradient 
+D/ax is non-zero and the upper plate moves 
with velocity V == nNr the boundary conditions 
on the velocity are: 

Friction ,jirctor 
In hydraulic calculations the pressure drop 

per unit of length is expressed by 

U(0) ‘=: 0, U( 1) :: n, (19) 

where n is positive or negative; for example, 
when y1 is negative the upper plate velocity is 
adverse to the velocity induced by the pressure 
gradient; when n = 0, i.e. the upper plate is at 
rest, the flow is the variable property Poiseuille 
flow. The special case of Couette flow is obtained 
when l?p~/a.x = 0 but non-zero V, and is included 
in the above set of equations; when the right- 
hand side of (I 6) is identically zero, Nr -= V, i.e. 
n = 1. 

The quantity 5 is known as the friction factor 
and it is easily shown that 

Shear stress and skin, j&iow 
The wall shear stresses are given by 

A description of the numerical solution of 
the fourth order boundary value problem defined 
by equations (lb)-(19) is given in Appendix B. 
During the course of the numerical work it was 

__~ ~~___...__. .~~_ _ 
* Otherwise for fixed TO and Tl a family of solutions 

exist for various datum temperature levels. However, if 
viscous dissipation is negligible the forced and free con- 
vection flows are simply superimposed. Some calculations 
have been completed for the free convection contribution 
to the flow for various T,, and these may be presented at 
;t later date. 

and 

These can be made dimensionless through the 
definition of local skin friction coefficients. Thus 

producing the following relations: 

established that the effect of viscous dissipation 
is negligible for the laminar flow of water at 
Re ... 2000. 

3. DEFINITIONS OF FLOW AND BEAT-TRANSFER 

CHARACTERISTICS 

Various quantities which are of interest are 
now defined. The reference temperature 

T, .--- $(Ti, ‘t Tl ) 

will be used throughout 
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(23) 

Nusselt number 
A dimensionless representation of the heat- 

transfer results is achieved by the use of a local 
heat-transfer coefficient and local Nusselt num- 
ber, which are written in the usual way as 

hd 
h=/To), Nu=p 

where the heat flux 

4 = --k(dT/dy). 

Thus at the walls: 

d0 
NUO = zY y=. and Nui = I 1 d0 

[--I dY Y=I' 
(24) 

respectively. 

Reynolds analogy factor 
At the walls y = 0 and d the Reynolds analogy 

factors are defined by: 

NuolCfo Rer and NudCf1&, 

respectively. 

Flow rate 
The flow rate per unit length of section is 

W=ypudy=N&UdY. (25) 
0 0 

4. RESULTS FROM CONSTANT FLUID 
PROPERTY MODEL 

Equations (16~(19) can be easily integrated 
for the special case of constant fluid property by 
setting p = pr and k = k,.. The results are: 

CT” Y- Ya+nY, (26) 
and 

0 = Y{l - (~,/6)[3(1 + n)2(Y - 1) - 
4(1 + n)(Y2 - 1) + 2(Y3 - l)]} (27) 

Neglecting the viscous dissipation contribution 
in (27) these constant fluid property results yield : 

d = 4 N,(l + 3n), 

5 Re, = 24/(1 + 3n), 

CJO Rer = 120 + n)/(l + 3n), 

Cfl Re, = 12(- 1 + n>/(l + 3n), 

Nuo = Nul = 1, 

o = (1 + 3n)/12(1 + n), 

1 = (1 + 3n)/12(-1 + n), 

. (28) 

WWrd) = pr[Q + 8 4. 

The special case of Poiseuille flow is obtained 
when n = 0. For Couette flow the constant fluid 
property results, neglecting viscous dissipation 
are : 

uro=y (29) 

and the relevant flow and heat-transfer para- 
meters are : 

V 
ii=- 

2’ 

Cf Rer = 4 for 0 < y < d, 1 
NU 

t 

(30) -- 
C’ Rer 

= $ for 0 < y < d, 

$= 3 pr. 

5. DISCUSSION OF VARIABLE FLUID PROPERTY 
RESULTS FOR WATER 

Flow and heat-transfer characteristics have 
been evaluated for a wide variety of cases. The 
computations have been carried out using the 
Bristol University IBM 1620 Computer. It must 
be emphasized that since viscous dissipation has 
been found negligible the thermal profiles for 
various TO and Tl are evaluated without requiring 
knowledge of the velocity profiles. Physically 
this implies that heat is transferred between the 
plates by conduction alone. In the following 
discussion the abbreviations C.P.F. and V.P.F. 
will be adopted for denoting constant property 
fluid and variable property fluid results respec- 
tively. In Figs. 2-8 the constant fluid property 
results, based on the reference temperature 
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Tiablc 2 

Temperature, T Couctte, ti Poi\euille. I* 

J,lCi O-10 o-40 

0 0~0000 0~000 
0.05 0.5105 2.153 
0.10 1,020 4.285 
0.15 1.521 6.399 
0.20 2.034 8.495 
0.25 2.540 10.57 
0.30 3.044 12.63 
0.35 3,547 14.68 
0.40 4.049 16.70 
0.45 4.551 IS.71 
0.50 505 1 2070 
0.55 5.550 22.68 
0.60 6,049 24.65 
0.65 6,546 26.60 
0.70 7.042 28.55 
0.75 7,538 30.48 
0.80 8.032 32.40 
0.85 8.526 34.32 
0.90 9.018 36.22 
0.95 9.510 38.11 
1.00 10.00 4oaO 

0~~100 C.P.F. 0 IO o--40 0 100 C.P.I-. 0 IO 0 10 0 IUU 
-. ..__ 

0.000 
5.709 

11.29 
16.74 
22.08 
27.32 
32.48 
37.57 
42.60 
47.57 
52.49 
51.37 
62.2 1 
67.01 
71.79 
76.54 
81.27 
86.00 
90.70 
95.36 

100~00 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
INI 

0~0000 
0.0428 
0.0863 
0.1305 
0.1755 
0.2212 
0.2677 
0.3149 
0.3629 
0.4117 
0.4613 
0.51 I6 
0.5627 
0.6145 
0.6672 
0.7207 
0.7749 
0.8300 
0.8859 
0.9425 
1.0000 

0~0ooo omoo 0~0000 0~0000 0~0000 
0.0284 0.0156 0.0475 0.0430 0.0323 
0.0588 0.0346 0.0900 0.0823 0.0637 
0.0913 0.0565 0.1275 0, I 179 0.094 I 
0.1259 0.0817 0.1600 0.1495 0.1229 
0.1652 0.1102 0.1875 0 1771 0. 1496 

0~0000 
0.0203 
0.0425 
0~060 I 
00X)5 
0~1151 
0. I393 
0.1623 
0.1836 
0.2023 
0.2176 
0~2288 
0.2350 
0.2354 
0 2’92 
0.2153 
0.1930 
@16l.? 
0.1 19’ 
0.065; 
0~0000 

0.2019 0.1422 0.2100 0.2005 0, I740 
0.2432 0.1778 0.2275 0.2195 0.1956 
0.2869 0.2171 0.2400 0.2340 
0.3328 0.2601 0.2475 0.2439 
0.3812 0.3069 0.2500 0.2489 
0.4319 0.3576 0.2475 0.2490 
0.4850 0.4122 0.2400 0.2440 

0.2139 
0.2284 
0.2387 
0.2444 
O-2448 
0.3396 
0.228 I 
0.2100 
0 1846 
O~l5l-i 
0. I IO0 
0.0597 
O~OOQO 

0.5406 0.4709 0.2275 0.2336 
0.5986 0.5337 0~2100 0.2179 
0.6591 0.6006 0. I875 0 1965 
0.7222 0.6717 0.1600 0.1693 
0.7877 0.7472 0.1275 0.1363 
0.8559 0.827 1 0.0900 0.0972 
0.9266 0.9113 0.0475 0.0518 
1-0000 I ~0000 0~0000 oaOo 

Tr ::z &(To -$- T’,), are indicated using a dashed 
line. 

To -~ 0°C‘ and Tl 7-r 100 C. a maximum differ- 
ence of +6.5 per cent occurs between the 
C.P.I’. and V.P.F. temperatures at ~s,!d 04. 
In Fig. 2 the thermal profile and related data 
on p. p and k are given graphically for the talc 
TO 0°C and TI -= 100°C. 

It is interesting to note that the rffcct 01 
variable k on the temperature profile in wale! 
may, in fact, be much greater than that due to 
the viscous dissipation in flows which are 
laminar. i.e. Rc -:I 2000. Returning to the 
C.P.F. example discussed in Section 2: ik can be 
shown, on using expression (27) that when 

YM : the C.P.F. model with viscous dissipn- 
tion gives T --- 15.00005”C. whilst the V.P.F. 
computed value is T = 15.051 C. 

The effect of variable viscosity on the veloc~tq 
profiles is most clearly seen from some of the 
computed results on Couette flow; these are 
given graphically in Fig. 3 and in tabular form 
in Table 2. If the plate at rest is maintained at 
temperature To and the moving plate is main- 
tained at temperature TI TO then as 7-1 
increases the velocity at any point decreases. The 
reason for this is that p decreases with increasing 

Temperature profiles 
In Table 2 some representative profileb are 

given for TO = 0°C and TI =-= lo,40 and 100°C, 
respectively. It is to be expected that the differ- 
ence between C.P.F. and V.P.F. thermal profiles 
is not appreciable since the conductivity varies 
slowly with the temperature. As k increases with 
increasing Tin the interval 0-lOO”C, the V.P.F. 
temperature will always be greater than the 
C.P.F. temperature at any point between the 
plates.* For example, in an extreme case with 

* This result follows directly from equations (17) and 
(18). On neglecting viscous dissipation, the relevant 
solution is [see expression @.ll)I 

YkdO -m Y; kd@. 
0 0 

For the range TO < T < TI, let 

k == ka(1 ?- A@), X > 0. 
Then 

0 + $X02 = (1 + &A)Y, 

and there result the inequalities: 

provided h > 0. 
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FIG. 2. Thermal profile 8 and related values of p, p and k for the case To = 0°C and TI = 100°C. 

T and so the moving hot plate exerts less shear 
force on the layer on fluid adhering to the plate. 
On the other hand if Tl -=c TO and TO increases 
the velocity at any point is increased since 
greater shear force is transmitted to the fluid 
by the cold moving plate. 

In Table 2 and Fig. 4 some profiles are given 
for the V.P.F. Poiseuille flow. The form of 
presentation of these results can be a little mis- 
leading due to the presence of the viscosity pr 
in the representative velocity 

A comparison of the V.P.F. profiles with the 
C.P.F. profile indicates that maximum velocity 
occurs between the central axis and the heated 

wall. The V.P.F. profiles can be compared with 
one another provided the pressure gradient and 
distance between the plates is the same in each 
case. Thus, for example, at y/d = 4 the ratio 

U(0, 100)/U(0, 10) = 
[p5 U(0. lOO)]/[p50 U(0, lo)] = 2.54. 

In fact if ap D/ax and d are kept fixed the velocity 
is increased on increasing the temperature of the 
liquid. 

In Fig. 5 velocity profiles are given for mixed 
V.P.F. Poiseuille and Couette flows. Here the 
V.P.F. and C.P.F. profiles can be compared 
with one another since the value of the reference 
viscosity pr is the same in each case. When the 
plate velocity and the pressure gradient induced 
velocity Nr are equal (i.e. n = l), it is seen that 
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FIG. 3. Variable property velocity profiles in Couette flow for various wall temperature conditions (To, ?) 

velocity overshoot occurs in the V.P.F. profile 
for TO = 100°C and TI = O”C, but does not 
occur in the C.P.F. profile. Compared with the 
C.P.F. profile, the V.P.F. profile has increases in 
velocity due to (a) the supply of heat at y = 0 
which lowers the viscosity in this region and so 
produces a greater pressure gradient force and 
(b) the extraction of heat by the cold moving 
plate at y = d, which now transmits greater 
shear force. The total contribution produces the 
observed velocity overshoot. When the plate 
velocity is adverse to that induced by the 
pressure gradient, then velocity undershoot is 
seen to occur in the profile for TO = 0°C 
TI = 100°C and 12 = - 1. Velocity overshoot 
does not occur in the profile for TO = O”C, 
T1 = 100°C with n = 1 as the effect of extracting 

heat at the fixed plate and supplying heat at 
the moving plate both result in a considerable 
reduction in velocity as compared with the 
C.P.F. profile; there is also a point of inflexion 
at y/d = O-675, which does not occur in the 
V.P.F. profile. 

In Fig. 6 velocity profiles are given for the 
two cases TO = O”C, TI = lOO”C, n -= j-2 and 
TO L=~ lOO”C, Tl = O”C, n -- +2, respectively. 
As the plate velocity is 2N, the Couette flow will 
always dominate the Poiseuille flow. This is 
especially true when heat is extracted at the 
moving plate. It should be noted that since 
viscous dissipation is negligible, and the gravita- 
tional buoyancy force has been neglected in the 
evaluation of the velocity profiles the various 
solutions presented are not all independent. 
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FIG. 4. Variable property velocity profiles in Poiseuille flow 
for various wall temperature conditions (To, TI). 

For mixed Poiseuille and Couette V.P.F. flow: Ti = lOO”C, W/(Vd) = O-3619, a reduction of 

Wo, Tl, n ; y/d) = 
twenty-three per cent in flow rate; this is due to 
reduced viscosity at the heated plate as pre- 

u(~i, ro,/ n; 1 _ y/d) + n, (31) viously discussed. It should be noted that 
although the dimensionless average velocities 

and for Couette V.P.F. flow: D = ii/V are related by the expression 

U(To, Tl; y/d) = 1 - U(Tl, To; 1 - y/d). (32) ~(To, Tl) = 1 - ~(TI, To), (33) 

Flow rate no such simple expression is true for pu. For 
For the case of Couette flow the flow rate W the range 0-100°C the maximum flow rate 

is given in Table 3 for various wall temperatures for C.P.F. Couette flow will occur when 
lying in the range 0-100°C. The quantity TO = 100°C and Tl = 0°C. If the C.P.F. model 
W/(Vd) decreases when heat is supplied to the [equation (30)] is used in this case the error in 
system. In particular for TO = Tl = O”C, W/(Vd) will be twenty-five per cent, 
W/(Vd) = 0.4999 but when TO = 0°C and Numerical results for V.P.F. Poiseuille flow 
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Frc;. 5. Representative velocity profiles in mixed Puiseuiile-Couette flow for various values of’ (I;,. ‘/ 1. II); )? 1. 
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FIG. 6. Representative velocity profiles in mixed Poiseuille-Couette flow for various values of (To, Ii, n); II i 
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Table 3 

To Tl 0 WC v4 Cf& NuolCfdh Nul/CJ1Re, 

0 0 
10 
40 
70 

100 

10 0 
10 
20 
40 
70 

100 

40 0 
10 
30 
40 
70 

100 

70 0 
10 

;: 
80 

100 

100 0 
10 
40 
70 

100 

0~5000 0.4999 4 a00 0.2500 0.2500 
0.4742 0.4741 4.205 0.2432 0.2330 
0.4208 0.4190 4.626 0.2340 0.2033 
0.3903 0.3852 4.872 0.2312 0.1906 
0.3714 0.3619 5.037 0.2298 0.1854 

0.5258 0.5257 3.792 0.2584 0.2697 
0.5000 0.49985 4.000 0.2500 0.2500 
0.4780 0.4714 4.175 0.2446 0.2348 
0.4439 0.4417 4.448 0.2375 0.2154 
0.4097 0.4041 4.728 0.2318 0.1995 
0.3877 0.3774 4.919 0.2284 0.1923 

0.5792 0.5783 3.362 0.2798 0.3220 
0.5561 0.5549 3.550 0.2699 0.2975 
0.5166 0.5138 3.867 0.2553 0.2620 
0.5000 0.4961 4.000 0.2500 0.2500 
0.4606 0.4527 4.319 0.2384 0.2262 
0.4327 0.4196 4.555 0.2303 0.2138 

0.6097 0.6067 3.120 0.2977 0.3611 
0.5903 0.5867 3.282 0.2874 0.3339 
0.5550 0.5495 3.565 0.2713 0.2933 
0.5000 0.4888 4.000 0.2500 0.2500 
0.4891 0.4762 4.088 0.2458 0.2437 
0.4700 0.4533 4.245 0.2389 0.2337 

0.6286 0.6225 2.976 0.3137 0.3889 
0.6123 0.6054 3.115 0.3036 0.3606 
0.5673 0.5569 3.475 0.2803 0.3019 
0.5300 0.5148 3.764 0.2635 0.2694 
0.5000 0.4789 4.000 0.2500 0.2500 

rates are given in Table 4; in Fig. 7 the quantity 
W/(iVJ) for TO = 0, 10,40,70, 100°C is plotted 
as a function of TT = $(To + TI). The various 
values computed for the range 0-100°C are 
bounded by the curves for TO = 0°C and 100°C 
and by the C.P.F. curve, which is also an 
envelope of the V.P.F. results. For V.P.F. 
Poiseuille flow pu(To, TI) = ~(TI, TO) and so 
curves for fixed TO intersect. Consider the 
results when TO = 40°C. There is a maximum 
in W/(N,d) at T = 4O”C, but this does not occur 
in the actual flow rate W. If d and apDlaX are 

kept fixed W increases monotonically with 
increasing T,, i.e. with increasing thermal 

capacity* of the system; when 

TO = 40°C then I+{;[_%]} E 

1.59, 1.84, 2.32, 2.55, 3.28 and 3.99 

for Tr = 20, 25, 35, 40, 55 and 70°C respec- 
tively. Again, if T,, [ap~/i?x] and d are kept fixed 
the V.P.F. flow rates are not independent of 

--____ 
* The thermal capacity of the system is defined as 

7 pC,Tdy = prCpTrd on the C.P.F. model. The V.P.F. 
0 
value will be close to this since p, C, and k-data vary 
slowly with T. 
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Tu 7-I 

0 0 
10 
40 
70 
too 

10 0 
IO 
20 
40 
70 
100 

40 0 
10 
30 
40 
70 
loo 

70 0 
10 
30 
70 
80 
100 

loo 0 
10 
40 
70 
too 

_I 

a 

0.1667 0.1666 2400 
0.1660 0.1660 24.09 
0.1597 0.1593 25.05 
0.1526 0.1512 26.22 
0.1465 0.1440 27.30 

0.1660 0.1660 24.09 
01667 0.1666 24.00 
0.1661 0.1660 24.08 
0.1631 01625 24.53 
0.1569 0.1554 25.49 
0.1510 0.1482 26.49 

0.1597 01593 2505 
0.1631 0.1625 24.54 
0.1664 0.1653 24.05 
0.1667 0.1654 24.00 
0.1647 0.1623 24,28 
0.1608 0.1570 24.87 

0.1526 0.1512 26.22 
0.1570 0.1554 25.49 
0.1629 0.1608 24.55 
0.1667 0.1629 24.00 
0.1665 0.1623 24.09 
0.1654 0.1602 24.18 

0.1465 0.1440 27.30 
0.1510 0.1482 26.49 
0.1608 0.1570 24.87 
0.1654 0.1602 24.18 
0.1667 0.1596 24XKI 
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C; I RP~ 

12.00 
12.67 
14.51 
15.99 
17-16 

12.00 
-11.42 
--IO.54 
~~ 10.23~ 
10.14 

Il.42 
12m 
12.53 
1364 
15.05 
16.22 

-12.67 
~-~ 12.00 
-~ll,Si 
~~- 10.89 
IO.55 
10.27 

to.54 
1089 
11.62 
12Go 
13.10 
14.11 

T&k 4 

-ml4..51 
13.64 
12.42 

- 12.00 
- 11.19 
IO.76 

to.24 
IO.44 
10.925 
l2xm 
12.27 
13.81 

-15,985 
15.05 

-. 13.63 
-12m 
11.75 
II.36 

10.14 
IO.27 
10.76 
II.36 
12.00 

~~ if.16 
16.22 
-14.11 
~- 12.81 
12.00 

TO and Tl. From Fig. 7, taking T, = 30°C 
~/(~~d) = 0.154, 0,160, 0*166, 0.164 when 
To = 0, 10, 30, 40°C respectively. Since 
z(7’0, Tr) = p(Tr, TO), there will be a maxi- 
mum flow rate when TO = Tr = T, =- 3O”C, 
i.e. when the fluid is at a uniform temperature 
of 30°C across the channel. 

time decreases the velocity due to the pressure 
gradient induced Poiseuille flow. For n .-r~ :-I 
and 12 and fixed TO, +D/ax and d, the flow rate 
increases with increasing Tr. In particular, for 
the C.P.F. model, the flow rate is zero when 

In Table 5 flow rates are given in tabular form 
for V.P.F. mixed Poiseuille and Couette flow 

when n = &I ; in Fig. 8 results are given 
graphically for n = Al and &2 together with 
the related C.P.F. values. Here the situation is 
complicated since a reduction in heat input 
increases the Couette velocity but at the same 

NIIO 

l,OOO 
I.023 
1.0825 
1.126 
1.1575 

0~9798 
I.000 
I.022 
1,056 
I.096 
1,123 

0.9408 
0.9581 
0.9875 
1Mo 
I.030 
1,049 

0.9288 
0.9431 
0.9671 
1wo 
1.005 
I.014 

0.9337 
0.9458 
0.9740 
0.9921 
I.000 

.- lmo 8,333 8,333 
-- 0.9798 8,072 8,571 
--0.9407 7.470 8,924 
--0.9288 7.047 9.075 
--0.9337 6.745 9.208 

-- 1.023 x.577 
--- 1400 8.333 
-0~9804 x.152 

8.072 
8 333 
8.518 
8,800 
8,942 
9,210 

--0.9581 7-744 
.--0.9431 7.283 
--0.9458 6,928 

--I-082:, w24 
--1,056 8-800 
--I,013 8.496 
--I.000 8.333 
--0.9771 7,862 
--0.9140 7,438 

--I,126 'PO75 
--- 1.096 9.029 
-I@46 8.852 
--1.000 8.333 
--0.9962 8.188 
-.-0.9921 7.914 

7,047 
7,283 
7.673 
8,333 
8.419 
x.731 

I.1573 9.208 h.745 
-~ 1.123 9.210 6,928 
-- lx)49 9,052 7,438 
--^ I.014 8.73 1 7,914 
lmo 8,333 8,333 

1,462 
7.744 
8~1% 
8,333 
8.735 
9.052 

Typical results for the V.P.F. (computed using 
Tables 2 and 3) are: TO := 0°C and Tr -=L 10, 40, 
70, lOO”C, n = -0.3502, -0+3801, .--0.3926 
and -0.3979, respectively; Trj = 100°C and 
TL =- 0, 10, 40, 70°C n = --O-2314, .-w-0.2448, 



LAMINAR FLOW BETWEEN PARALLEL FLAT PLATES 1529 

W 

N,d 

0.16 

0.15 

0.14 -- 
0 1 20 40 60 60 70 0 

b 

FIG. 7. Variable property Poiseuille flow rates for various values of 7’0 as a function of Tr = !_QO + TI). 

-0.28 19 and - 0.3 111, respectively. These 
results indicate that when heat is supplied at the 
moving plate, a larger adverse velocity is required 
for the V.P.F. than in the C.P.F. model to 
produce zero flow rate. 

Nusselt number 
The heat flux across the channel is constant 

and is independent of the flow rate. In Table 4 
the wall Nusselt numbers NUO and Nul are given, 
and these are simply related by the expression : 

Nuo kl . 
Nul ko ’ (34) 

it follows from (34) that NUO > Nul if TO < Ti, 
since k increases with increasing T. When 
TO = 0°C and d = 1 cm, the heat flux q1 

[defined by expressions (24)] required to produce 
the temperatures TI = 10, 40, 70, 100°C are 
485, 2052, 3731, 5460 kcal/ms h, respectively. 

Friction factor, skin friction coeflcient and 
Reynolds analogy factor 

These various dimensionless quantities are 
given in Tables 3,4 and 5 for Poiseuille, Couette 
and mixed Poiseuille-Couette flow respectively. 

For Poiseuille flow the dimensionless group 
5 Re, varies slowly for fixed TO and variable TI. 
Hence if apD/aX and d are kept constant the 
friction factor 5 will decrease when heat is 
supplied to the flow. The skin friction coefficients 
Cfo and Cfl follow the same trend although the 
rate of decrease at the cold wall will be much 
less than that at the heated wall. It should be 
noted that the absolute magnitudes of the wall 
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Table 5 

7-O 7-I 

0 0 
10 
40 
70 
100 

10 0 
10 
20 
40 
70 
loo 

40 0 
10 
30 
40 
70 
100 

70 0 
IO 
30 
70 
80 
100 

loo 0 
10 
40 
70 
100 

I 

1 I i, 
0 W,'(NJ) ;Rr, C&e, C‘fIRer c W/ ( N, d) <Rr+ ’ 

0.6667 0.6665 6,000 60lO 0~0000 ~ 0.3333 -0.3333 12.00 
0.6402 0.6401 6.248 6.400 0.1518 

~ 
0.3081 --0.3081 12.98 

0.5805 0.5783 6.890 7.345 0.4541 0.2611 0.2598 15.32 
0.5429 0.5365 7.368 7.995 0.6272 0.2378 0.2340 16.82 
0.5179 0.5058 7.723 8.467 0.7437 O-2249 0.2179 17.78 

0.6919 0.6919 5,782 5.623 0.1581 
0.6667 0.6665 6.000 6,000 0~0000 
0.6441 0.6441 6,210 6.340 0.1301 
0.6069 0.6069 6.590 6.918 0.3278 
0.5666 0.5664 7.059 7,585 0.5261 
0.5388 0.5388 7,424 8.086 0.6616 

0.7389 0.7376 5.414 4,913 0.5005 -0.4194 
0.7192 0.7174 5,562 5.214 0.3477 0.39305 
0.6829 0.6791 5.857 5,757 0.1003 -0.3503 
0.6667 0.6614 6GOO 6,000 0~0000 0.3333 
0.6253 0.6149 6.397 6,632 0.2353 0.2959 
0.5935 0.5766 6,739 7.144 0.4048 0.2719 

0.7622 0.7580 5.248 4.544 0.7041 -0.4571 
0.7472 0.7421 5.353 4.786 0.5676 -0.4333 
0.7179 0.7104 5.571 5.235 0.3363 0.3921 
0.6667 0.6517 6.000 6.000 0~0000 0.3333 
0.6556 0.6385 6.101 6.167 0.0655 0.3226 
0.6354 0.6134 6.295 6.476 0~1811 -0.3045 

0.7751 0.7665 5.161 4,331 0.8301 ~0-4821 
0.7633 0.7536 5.2405 4,531 0.7097 0.4612 
0.7281 0.7139 5.493 5.084 0.4094 0.4064 
0.6954 0.6750 5.7515 5,572 0.1799 0.3646 
0.6667 0.6386 6.000 6.000 0~0000 0.3333 

Reynolds analogy factors are not identical for a 
V.P.F.; in the case of TO = 0°C and TJ - -: 100°C 
these differ by 37 per cent. 

In Couette flow the shear stress at any point 
across the channel is constant and so the skin 
friction coefficients will be the same at both 
fixed and moving plates. Once again, for fixed 
V and rl, the skin friction coefficient is reduced 
when heat is supplied to the system. Reynolds 
analogy is exact in this case since both shear 
stress and heat flux remain constant at any 
point across the channel. The difference between 
the wall Reynolds analogy factors quoted in 
Table 3 is due to the definitions taken for NW 
and Nur ; in fact 

0.3598 
0.3333 
0.3119 
0.2808 
0.2528 
0.2367 

~- 0.3597 Il.12 0.2702 i1.3r 
0.3333 12.00 0~0000 12.00 
0.3114 12.82.i 0.2954 12.53 
0.2792 14.245 0.8906 I ; i F 
0.2487 15.82 I-677 I.1 1.i 
-0.2292 I690 2,288 I .A 6 ! 

~- 0.4191 Y.535 
-0.3924 IO.18 
0.3484 II.42 
0.3307 12.00 
0.2904 13.52 
0.2627 14.71 

0.4555 5.751 
0.4314 9,230 
0.3887 IO.20 
0.3292 12.00 
0.3139 12.40 
-0.2931 lR~13;> 

0.4785 X.298 
0.4572 8,672 
0.3999 0,841 
0.3546 10.97 
~0.3193 12.00 

0~0000 12.00 
0.3550 12.63 
I.416 Ii.90 
2'257 l-i.56 
2.861 11.92 

0.6284 IO.lh 
0.5062 IO 68 
0.1838 i 1 ‘60 
0~0000 12.00 
0.5676 12.YY 
1.096 I3,hl 

0.7450 Y-33(, 
0.6879 Y.')IP 
0.5070 IO.71 
0~0000 12.00 
0.1375 12'6 
0~4109 11?2 

(I-7Y90 'J-097 
0.7728 Y-t45 
0.5912 10.43 
0.3156 lI.2U 
0~0000 11~00 

kc, Nuo/Cfo Re, --- I, 1 Nul /C’fl Rer. (35) 

For mixed Poiseuille-Couette flow shear 
friction coefficients are given for ?I i ! and 

n ~~ I. These are useful as a guide for deciding 
the appropriate wall temperatures producing 
velocity overshoot when n z-- -t- 1, and velocity 
undershoot when n 2 1. Obviously these 
effects will occur when the skin friction coefh- 
cients have opposite signs; for example. when 
To >~ 4O’C: 

velocity overshoot occurs when II :~ 1. 
Tl .:. 4O”C, i.e. by cooling the moving plate; 

velocity undershoot occurs when 17 -~ 1. 

T1 -. 40°C. i.e. by heating the moving plate. 
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FIG. 8. Variable property flow rates in mixed Poiseuille-Couette flow for various values of TO as a function of 
T, = Wo + 7.1). 
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APPENDIX A 

Data for saturated w’ater 
The data for saturated water have been taken 

from tables recently compiled by Mayhew and 
Rogers [13]; the smoothed experimental values 
of the density, specific heat, viscosity and con- 
ductivity for 0 5.; T < 100°C are given in Table 
1 in metric units. Although the specific heat data 
is not used in the present paper, it has been 
included for completeness and will be used in 
later work. 

There are two methods of fitting data of the 
above type: (a) by collocation and (6) by the 
method of least squares. The theoretical expres- 
sion used can take the form of either an algebraic 
expression or a series of orthogonal poly- 
nomials. Each of these methods have well-known 
pitfalls, especially when the data has an appre- 
ciable scatter. If this is the case, method (b) must 
be employed. However, the data for saturated 
water are now accurately known and possibly 
only the last figure quoted may be in error. Thus 
the method of collocation is used. 

Algebraic expressions are chosen in the form: 

Consider the p-data in the range O-100 C’, 
If t? --= 2 values of p at T -z 0, 50 and 100°C arc 
used to determine A(), A1 and Aa; tz is increased 
by 2 and p values at T O(2S)lOO”C are used 
to determine the Ai for i O( 1)4. The calculation 
is then repeated with n IO and 20. It is Found 
that these theoretical expressions improve in 
accuracy with increasing n provided I? 10. 
The accuracy being checked on comparing 
values obtained using the theoretical expression 
with experimental values at points intermediate 
to those used in the fitting process. However, 
when n == 10, unavoidable small oscillations 
begin to appear in the theoretical expression at 
these points. For n m= 20 these oscillations have 
quite alarming amplitudes, especially near the 
end points at T -~~ 0 and 100°C. For this reason 
the value of the derivative dp/dT, evaluated 
using the theoretical expression, is in serious 
error when n is large. 

The results for n == 10 have been accepted for 
the [J-data and as can be seen in Table 1 are in 
error by less than 0.1 per cent. Similar accuracy 
for the C,-data was achieved with n -= IO. The 
p-data have been fitted precisely, as this data 
has already been smoothed in [13] after taking 
logarithms. For the k-data with II -= 10 the 
accuracy obtained was ~0.1 per cent foi 
0 i’ T .: 85°C. The theoretical expressions re- 
veal a spurious maximum near 95°C. In fact ;\ 
rather diffuse maximum does occur in the 
experimental data in the range 115-l 35°C. 
It is possible that these spurious oscillations 
found in the theoretical expressions near 100°C 
could be avoided by fitting in the range 0-140°C 
and using the expressions for the range 0-100°C 
only. 

It is interesting to note that the inversion 
temperature near 4°C has been adequately pre- 
dicted by the p-expression. For problems 
involving forced convection an accuracy of 
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i 

0 
I 
2 
3 
4 
5 
6 
I 
8 
9 

10 

Table 6 
_ _ 

At Bt CI Dt 

-- 0.988 130 0.988 610 - 5.208 294 - 6470 986 
-0.021761 0.003 382 -0.836 625 0095 773 
-0.010265 - 0.002 976 0.228 220 - 0,069 060 
-0.013 377 oGo4 571 -0.072 689 0,027 692 
-0GO1000 0.081685 0.036 071 0204 396 

0.064 100 -0.026 187 - 0.025 843 -0.145 549 
0.037 889 -0.275 517 - 0.041654 -0.793 563 

-0.096 266 0.034 689 0.018 216 0.309 234 
- 0.078 639 0.384 833 0.072 355 1.126 945 

0.046 325 -0.015 495 - 0.006 439 -0.179 732 
0.042 705 -0.180 145 -0.037 178 -0.523 533 

._____._~~~ 

~0.1 per cent in the fitting procedure is sufficient 
for all practical purposes; the coefficients Ai, 
&, Ci, Dt and i = O(l)10 for saturated water 
are given in Table 6. However, for free con- 
vection flows a more careful appraisal of the 
p-data is required, especially in the range O”C- 
10°C. 

APPENDIX B 

Numerical solution of equations (16~(19) 
New variables yi and ye are introduced as 

follows : 

y1 = 0 and 
k , 

Y2 =k Yl, (B.1) r 

where the prime denotes differentiation with 
respect to Y. The boundary value problem defined 
by equations (8)-(10) is then equivalent to the 
system of first order equations: 

y; = 2Y2, Yl(0) = 0, (B.2) 

v; = - yr; @ - 2( y - w, Y2M = a, 

03.3) 

yj = -2( Y - 4);) y3(0) = 0, 

y; =;, y4(0) = 0. 

where 

1 _z_cL1.- _ 
P = Jk,(Tr - To) 

H.M.--5A 

(B-4) 

(B-5) 

is a dimensionless constant. The dimensionless 
velocity is 

U = Y3(Y) + /3Y4(Y). (B.6) 

In the above system of equations the unknown 
constants of integration a and /3 are determined 
such that the conditions O(1) = 1 and U(1) = n 
are satisfied. It follows that 

and 

Yl(1) = 1, (B-7) 

B = In - Y3 UN/Y4(1), 03.8) 

and so the equations (B.2)-(BS), together with 
the conditions (B.7) and (B.8) must be solved by 
an iterative scheme. 

Except in the case of high viscosity oils, the 
parameter y,. is small and so for most liquids a 
first approximation to the above equations is 
obtained by putting y,. = 0. On neglecting 
viscous dissipation (yr = 0) in equation (B.3) 

ys( Y) = a = const. (B.9) 

and (B.2) becomes 

y; = p a, y1(0) = 0. (B.lO) 
7 

On elementary integration and using condition 
(B.7), 

I 

a =; kdyi, 
s 
0 

or in terms of the physical variables: 
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Given the theoretical expression for the k-data 
the constant a is determined by numerical 

integration: in Table 1 the 1 k dT is tabulated 

for water. Equations (B.lO), (B.4) and (B.5) are 
integrated simultaneously and /3 is calculated 
using expression (B.8). Using this value of ,LI 
equations (B.2) and (B.3) for non-zero yr are 
solved, by an iterative method, to determine CL 
consistent with (B.7). Once a new value of ~1 
is available the equations (B.2)-(B.5) are solved 
simultaneously to determine from (B.8) the next 
estimate of /3. This process is repeated until the 
required accuracy is obtained in yl, .V:S and .I’.$, 
i.e. in 0 and U. 

For the special case of Couette tlow equation 
(B.3) is replaced by: 

equation (B.4) is omitted and the condition (B.8) 
is replaced by 

(B.13) 

The procedure already described for solving the 
more general equations (B.2)-(B.8) is also 
applicable to this case. 

The numerical integration 01‘ the above lirst 
order equations may be performed using the 
Runge-Kutta method. Once C: and 8 arc known 
with accuracy the dimensionless average velocity 

0 and the dimensionless rnabs flow ( I p,.)’ 
are found on integrating the first order equations: 

I*; ~- JY. .l’a(O) 0. tll.14) 

13,; .J’-1. _l’tAO) 0. tB.15, 

’ i’ 
.’ i .I‘:& J’;(Oi 0, (H.10) 

/Jr 

and 

y; =; I’ V-1, ,YR(O) 0. 
[‘r. 

(8.17) 

In the general case with pressure gradient 
occurring: 

for Couette flow only equations (B.15) and 
(B. 17) are integrated, yielding : 

(B.19) 

R&me-L’6coulement laminaire entitrement dCveloppt: d’eau dans une conduite verticale est Ed- 
amine, en employant les equations complBtes du mouvement avec les valeurs exptrimentales (dans la 
gamme 0-100°C) pour la viscositC, la conductivitC, la chaleur sptcifique et la densit Bien que les effets 
locaux des variations de ces quantitts sont Cvidemment faibles, I’effet cumulatif est sensible pour dea 
diffkrences de temptrature mod&es. En consCquence, on a insist6 sur I’Cvaluation des propriCt& 
inttgrees telles que le flux de masse et le transport de chaleur. 

Des 6coulements de Poiseuille, de Couette et de Poiseuille-Couettc (mixtes) son1 examin 
pour une gamme de diffkrences de temperatures pariktales et les effets de la dependance de ces pm- 
pri&Cs en fonction de la temperature sur les profils de vitesse et de temperature sont discutCs en dCtaii. 
Les nombres de Nusselt pariktaux, les dkbits, les coefficients de frottement, les coefficients de pertc 

de charge et les facteurs d’analogie de Reynolds sont examints pour tous ces r6gimes. 

Zusammenfassung-Unter Verwendung der vollst%ndigen Bewegungsgleichungen mit Versuchswerlen 
(im Bereich von 0” bis 100°C) fiir die Zghigkeit, Leitfghigkeit, spezifische WBrmekapazitit und 
Dichte wird die ausgebildete laminare Stramung von Wasser in einem senkrechten Kanal untersucht. 
Obwohl die lokale Auswirkung bei Anderungen diesser GrGssen natiirlich klein ist, wird ihrGesamtein- 
Russ bei geringen Temperaturunterschieden bedeutend. Demnach wurde der Berechnung der Integral- 
griissen wie Massenstrom und WBrmetibergang besondere Bedeutung beigemessen. 
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Poiseuille-, Couette- und gemischte Poiseuille-Couettestromungen werden fur einen Bereich von 
Wandtemperaturunterschieden untersucht und die Eintliisse der temperaturabhtigigen Stoffgriissen auf 
die Geschwindigkeits- und thermischen Profile im einzelnen diskutiert. Fiir alle diese Bereiche 
werden Wandnusseltzahlen, Stromungsgeschwindigkeiten, Oberflachenreibungsbeiwerte, Reibungs- 

beiwerte und analoge Reynoldszahlen berechnet. 

AHHOTaq~Ji-PaCCMaTpllsaeTcRrrOnHOCTbropa3BHTOeJraMMHapHOeTe~eHvreBOAbIBBepTHKa3I- 

bHOM KaHajIe C IIOMOQbIO CHCTeMbI ypaBHeHI& ,QBII%eHHFI, EICIlOJIb3yR 3KCIIepHMeHTaJIbHbIe 

3Ha~eH14FI(B06JIaCTHOT0°~0 ~~~0~.)B~3KOCTH,Te~~O~pOBO~HOCTH,y~eJIbHOZtTe~JIOeMKOCTLl 

M IIJIOTHOCTII. He CMOTpFl Ha TO, YTO JIOKaJIbHbIe I13MeHeHIIH 3TBX BeJIWIHH He3HaWITeJIbHb1, 

MIX 06mun B@@eKT CyqeCTBeHeH AJIH Cpe~HHXTeMKepaTypHbIXpa3HOCTeti. B COOTBeTCTBlIR C 
3TLIM, o6pamanocb OCO6Oe BHHMaHHe Ha OUeHKy HHTerpaJIbHbIX XapaKTepSiCTHK, TaKHX KaK 

IIOTOK MaCCLII TeIIJIOO6MeH. 

klcc~e~oBa~~CbTeveHaRITyaaeZin~,Ky3TTa~cMe~aHHoeTe~eK~e ITyaaePnx-ICyaTTaBHe- 

KOTOpOM~Ma~a3OHe~epe~a~OBTeM~epaTypbIyCTeHKLI.~O~pO6HOpaCCMaTpMBajIOCbB~llFIHHe 

3aBHCBMLIX OT TeMIIepaTypLI CBOtiCTB Ha IIpO@H.ilH CKOpOCTH 12 TeMIIepaTypLI. &IFI BCeX 

pewmon npon3BegeH paccseT mcen HyCCeJIbTa y cTeHKn, nracconoro pacxofla ~M~KOCT~, 

KO3lj@II[~~eHTOB IIOBepXHOCTHOl'O TpeHItE,TpeHHfl M aHaJIOUIK PefiHOJIb~Ca. 


